Pérez-Patricio Madaín, Osuna-Coutiño J A de Jesús, Ríos-Toledo German, Aguilar-González Abiel, Camas-Anzueto J L, Morales-Navarro N A, Velázquez-González J Renán, Cundapí-López Luis Ángel
Department of Science, Tecnológico Nacional de México/IT Tuxtla Gutiérrez, Carr. Panamericana 1080, Tuxtla Gutierrez 29050, Chiapas, Mexico.
Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Cholula 72840, Puebla, Mexico.
Sensors (Basel). 2024 Dec 9;24(23):7860. doi: 10.3390/s24237860.
Plant stress detection involves the process of Identification, Classification, Quantification, and Prediction (ICQP) in crop stress. Numerous approaches exist for plant stress identification; however, a majority rely on expert personnel or invasive techniques. While expert employees demonstrate proficiency across various plants, this approach demands a substantial workforce to ensure the quality of crops. Conversely, invasive techniques entail leaf dismemberment. To overcome these challenges, an alternative is to employ image processing to interpret areas where plant geometry is observable, eliminating the dependency on skilled labor or the need for crop dismemberment. However, this alternative introduces the challenge of accurately interpreting ambiguous image features. Motivated by the latter, we propose a methodology for plant stress detection using 3D reconstruction and deep learning from a single RGB image. For that, our methodology has three steps. First, the plant recognition step provides the segmentation, location, and delimitation of the crop. Second, we propose a leaf detection analysis to classify and locate the boundaries between the different leaves. Finally, we use a Deep Neural Network (DNN) and the 3D reconstruction for plant stress detection. Experimental results are encouraging, showing that our approach has high performance under real-world scenarios. Also, the proposed methodology has 22.86% higher precision, 24.05% higher recall, and 23.45% higher F1-score than the 2D classification method.
植物胁迫检测涉及作物胁迫中的识别、分类、量化和预测(ICQP)过程。存在多种植物胁迫识别方法;然而,大多数方法依赖专业人员或侵入性技术。虽然专业人员在各种植物方面表现出专业能力,但这种方法需要大量劳动力来确保作物质量。相反,侵入性技术需要对叶片进行分割。为了克服这些挑战,一种替代方法是利用图像处理来解读可观察到植物几何形状的区域,从而消除对熟练劳动力的依赖或对作物进行分割的需求。然而,这种替代方法带来了准确解读模糊图像特征的挑战。受此启发,我们提出了一种使用3D重建和从单张RGB图像进行深度学习的植物胁迫检测方法。为此,我们的方法有三个步骤。首先,植物识别步骤提供作物的分割、定位和界定。其次,我们提出叶片检测分析来对不同叶片之间的边界进行分类和定位。最后,我们使用深度神经网络(DNN)和3D重建进行植物胁迫检测。实验结果令人鼓舞,表明我们的方法在实际场景中具有高性能。此外,与二维分类方法相比,所提出的方法在精度上提高了22.86%,召回率提高了24.05%,F1分数提高了23.45%。