Wang Yunlong, Zhang Zhiyong
School of Electronic and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.
Sensors (Basel). 2025 Jan 17;25(2):526. doi: 10.3390/s25020526.
Exploring the relationships between plant phenotypes and genetic information requires advanced phenotypic analysis techniques for precise characterization. However, the diversity and variability of plant morphology challenge existing methods, which often fail to generalize across species and require extensive annotated data, especially for 3D datasets. This paper proposes a zero-shot 3D leaf instance segmentation method using RGB sensors. It extends the 2D segmentation model SAM (Segment Anything Model) to 3D through a multi-view strategy. RGB image sequences captured from multiple viewpoints are used to reconstruct 3D plant point clouds via multi-view stereo. HQ-SAM (High-Quality Segment Anything Model) segments leaves in 2D, and the segmentation is mapped to the 3D point cloud. An incremental fusion method based on confidence scores aggregates results from different views into a final output. Evaluated on a custom peanut seedling dataset, the method achieved point-level precision, recall, and F1 scores over 0.9 and object-level mIoU and precision above 0.75 under two IoU thresholds. The results show that the method achieves state-of-the-art segmentation quality while offering zero-shot capability and generalizability, demonstrating significant potential in plant phenotyping.
探索植物表型与遗传信息之间的关系需要先进的表型分析技术来进行精确表征。然而,植物形态的多样性和变异性给现有方法带来了挑战,这些方法往往无法在不同物种间通用,并且需要大量带注释的数据,尤其是对于三维数据集而言。本文提出了一种使用RGB传感器的零样本三维叶片实例分割方法。它通过多视图策略将二维分割模型SAM(分割一切模型)扩展到三维。从多个视角捕获的RGB图像序列用于通过多视图立体视觉重建三维植物点云。HQ-SAM(高质量分割一切模型)在二维中分割叶片,并将分割结果映射到三维点云。一种基于置信度分数的增量融合方法将来自不同视图的结果汇总为最终输出。在一个自定义的花生幼苗数据集上进行评估时,该方法在两个交并比阈值下实现了点级精度、召回率和F1分数超过0.9,以及对象级平均交并比和精度超过0.75。结果表明,该方法在实现最先进的分割质量的同时,还具备零样本能力和通用性,在植物表型分析中显示出巨大潜力。