Suppr超能文献

一项包含炎症指标的预测性列线图的开发与验证,用于主要接受手术或局部区域治疗的肝细胞癌患者的总生存:一项单中心回顾性研究

Development and validation of a prognostic nomogram including inflammatory indicators for overall survival in hepatocellular carcinoma patients treated primarily with surgery or loco-regional therapy: A single-center retrospective study.

作者信息

Wang Xin, Xu Jing, Jia Zhenya, Sun Guoping

机构信息

Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

Medicine (Baltimore). 2024 Dec 13;103(50):e40889. doi: 10.1097/MD.0000000000040889.

Abstract

Hepatocellular carcinoma (HCC) is among the most prevalent malignant tumors, but the current staging system has limited efficacy in predicting HCC prognosis. The authors sought to develop and validate a nomogram model for predicting overall survival (OS) in HCC patients primarily undergoing surgery or loco-regional therapy. Patients diagnosed with HCC from January 2017 to June 2023 were enrolled in the study. The data were randomly split into a training cohort and a validation cohort. Utilizing univariate and multivariate Cox regression analyses, independent risk factors for OS were identified, and a nomogram model was constructed to predict patient survival. Therapy, body mass index, portal vein tumor thrombus, leukocyte, γ-glutamyl transpeptidase to platelet ratio, monocyte to lymphocyte ratio, and prognostic nutritional index were used to build the nomogram for OS. The nomogram demonstrated strong predictive ability, with high C-index values (0.745 for the training cohort and 0.650 for the validation cohort). ROC curves, calibration plots, and DCA curves all indicated satisfactory performance of the nomogram. Kaplan-Meier curve analysis showed a significant difference in prognosis between patients in the low- and high- risk groups. This nomogram provides precise survival predictions for HCC patients and helps identify individuals with varying prognostic risks, emphasizing the need for individualized follow-up and treatment plans.

摘要

肝细胞癌(HCC)是最常见的恶性肿瘤之一,但目前的分期系统在预测HCC预后方面效果有限。作者旨在开发并验证一种列线图模型,用于预测主要接受手术或局部区域治疗的HCC患者的总生存期(OS)。研究纳入了2017年1月至2023年6月期间诊断为HCC的患者。数据被随机分为训练队列和验证队列。利用单因素和多因素Cox回归分析,确定OS的独立危险因素,并构建列线图模型来预测患者生存。治疗、体重指数、门静脉肿瘤血栓、白细胞、γ-谷氨酰转肽酶与血小板比值、单核细胞与淋巴细胞比值以及预后营养指数被用于构建OS列线图。该列线图显示出强大的预测能力,C指数值较高(训练队列为0.745,验证队列为0.650)。ROC曲线、校准图和DCA曲线均表明列线图的性能令人满意。Kaplan-Meier曲线分析显示低风险组和高风险组患者的预后存在显著差异。该列线图为HCC患者提供了精确的生存预测,并有助于识别具有不同预后风险的个体,强调了个性化随访和治疗计划的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69d3/11651482/9f6e73a2f601/medi-103-e40889-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验