Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
BMC Cancer. 2024 May 21;24(1):617. doi: 10.1186/s12885-024-12387-3.
Hepatocellular carcinoma (HCC) presents a significant threat to individuals and healthcare systems due to its high recurrence rate. Accurate prognostic models are essential for improving patient outcomes. Gamma-glutamyl transpeptidase (GGT) and prealbumin (PA) are biomarkers closely related to HCC. This study aimed to investigate the predictive value of the GGT to PA ratio (GPR) and to construct prognostic nomograms for HCC patients without microvascular invasion.
We retrospectively analyzed data from 355 HCC patients who underwent radical hepatectomy at Shengjing Hospital of China Medical University between December 2012 and January 2021. Patients were randomly assigned to a training cohort (n = 267) and a validation cohort (n = 88). The linearity of GPR was assessed using restricted cubic spline (RCS) analysis, and the optimal cut-off value was determined by X-tile. Kaplan-Meier survival curves and log-rank tests were used to investigate the associations between GPR and both progression-free survival (PFS) and overall survival (OS). Cox multivariate regression analysis identified independent risk factors, enabling the construction of nomograms. Time-dependent receiver operating characteristic (ROC) and calibration curves were used to evaluate the accuracy of the nomograms. Decision curve analysis (DCA) assessed the predictive value of the models.
Patients were categorized into GPR-low and GPR-high groups based on a GPR value of 333.33. Significant differences in PFS and OS were observed between the two groups (both P < 0.001). Cox multivariate analysis identified GPR as an independent risk factor for both PFS (OR = 1.80, 95% CI: 1.24-2.60, P = 0.002) and OS (OR = 1.87, 95% CI: 1.07-3.26, P = 0.029). The nomograms demonstrated good predictive performance, with C-index values of 0.69 for PFS and 0.76 for OS. Time-dependent ROC curves and calibration curves revealed the accuracy of the models in both the training and validation cohorts, with DCA results indicating notable clinical value.
GPR emerged as an independent risk factor for both OS and PFS in HCC patients without microvascular invasion. The nomograms based on GPR demonstrated relatively robust predictive efficiency for prognosis.
肝细胞癌(HCC)由于其高复发率,对个人和医疗保健系统构成重大威胁。准确的预后模型对于改善患者的预后至关重要。γ-谷氨酰转肽酶(GGT)和前白蛋白(PA)是与 HCC 密切相关的生物标志物。本研究旨在探讨 GGT 与 PA 比值(GPR)的预测价值,并构建无微血管侵犯 HCC 患者的预后列线图。
我们回顾性分析了 2012 年 12 月至 2021 年 1 月在中国医科大学盛京医院接受根治性肝切除术的 355 例 HCC 患者的数据。患者被随机分配到训练队列(n=267)和验证队列(n=88)。采用限制性立方样条(RCS)分析评估 GPR 的线性关系,并通过 X-tile 确定最佳截断值。Kaplan-Meier 生存曲线和对数秩检验用于研究 GPR 与无进展生存期(PFS)和总生存期(OS)之间的关系。Cox 多变量回归分析确定独立的危险因素,从而构建列线图。时间依赖性接受者操作特征(ROC)和校准曲线用于评估列线图的准确性。决策曲线分析(DCA)评估模型的预测价值。
根据 GPR 值为 333.33,患者被分为 GPR 低和 GPR 高组。两组之间的 PFS 和 OS 差异均有统计学意义(均 P<0.001)。Cox 多变量分析发现 GPR 是 PFS(OR=1.80,95%CI:1.24-2.60,P=0.002)和 OS(OR=1.87,95%CI:1.07-3.26,P=0.029)的独立危险因素。列线图显示出良好的预测性能,PFS 的 C 指数值为 0.69,OS 的 C 指数值为 0.76。时间依赖性 ROC 曲线和校准曲线显示了模型在训练和验证队列中的准确性,DCA 结果表明具有显著的临床价值。
GPR 是无微血管侵犯 HCC 患者 OS 和 PFS 的独立危险因素。基于 GPR 的列线图对预后具有相对稳健的预测效率。