Suppr超能文献

核酸酶:从原始免疫防御者到现代生物技术工具

Nucleases: From Primitive Immune Defenders to Modern Biotechnology Tools.

作者信息

Hernandez Frank J

机构信息

Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

Department of Bioengineering and Biosciences, TECNUN, Navarra University, Donostia, Spain.

出版信息

Immunology. 2025 Mar;174(3):279-286. doi: 10.1111/imm.13884. Epub 2024 Dec 16.

Abstract

The story of nucleases begins on the ancient battlefields of early Earth, where simple bacteria fought to survive against viral invaders. Nucleases are enzymes that degrade nucleic acids, with restriction endonucleases emerging as some of the earliest defenders, cutting foreign DNA to protect their bacteria hosts. However, bacteria sought more than just defence. They evolved the CRISPR-Cas system, an adaptive immune mechanism capable of remembering past invaders. The now-famous Cas9 nuclease, a key player in this system, has been harnessed for genome editing, revolutionising biotechnology. Over time, nucleases evolved from basic viral defence tools into complex regulators of immune function in higher organisms. In humans, DNases and RNases maintain immune balance by clearing cellular debris, preventing autoimmunity, and defending against pathogens. These enzymes have transformed from simple bacterial defenders to critical players in both human immunity and biotechnology. This review explores the evolutionary history of nucleases and their vital roles as protectors in the story of life's defence mechanisms.

摘要

核酸酶的故事始于早期地球的古老战场,当时简单的细菌为抵御病毒入侵者而奋力求生。核酸酶是一类能够降解核酸的酶,其中限制性内切核酸酶是最早出现的一些防御者,它们切割外来DNA以保护其细菌宿主。然而,细菌寻求的不仅仅是防御。它们进化出了CRISPR-Cas系统,这是一种能够记住过去入侵者的适应性免疫机制。如今著名的Cas9核酸酶是该系统的关键组成部分,已被用于基因组编辑,给生物技术带来了革命性的变化。随着时间的推移,核酸酶从基本的病毒防御工具演变成了高等生物免疫功能的复杂调节因子。在人类中,脱氧核糖核酸酶和核糖核酸酶通过清除细胞碎片、预防自身免疫和抵御病原体来维持免疫平衡。这些酶已从简单的细菌防御者转变为人类免疫和生物技术中的关键角色。本综述探讨了核酸酶的进化历史及其在生命防御机制故事中作为保护者的重要作用。

相似文献

1
Nucleases: From Primitive Immune Defenders to Modern Biotechnology Tools.
Immunology. 2025 Mar;174(3):279-286. doi: 10.1111/imm.13884. Epub 2024 Dec 16.
2
CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.
Annu Rev Microbiol. 2015;69:209-28. doi: 10.1146/annurev-micro-091014-104441. Epub 2015 Jul 22.
3
Synthetic chimeric nucleases function for efficient genome editing.
Nat Commun. 2019 Dec 4;10(1):5524. doi: 10.1038/s41467-019-13500-y.
4
How bacteria control the CRISPR-Cas arsenal.
Curr Opin Microbiol. 2018 Apr;42:87-95. doi: 10.1016/j.mib.2017.11.005. Epub 2017 Nov 21.
5
Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a.
Biochem Soc Trans. 2020 Feb 28;48(1):207-219. doi: 10.1042/BST20190563.
6
Basics of genome editing technology and its application in livestock species.
Reprod Domest Anim. 2017 Aug;52 Suppl 3:4-13. doi: 10.1111/rda.13012.
7
Non-viral delivery of genome-editing nucleases for gene therapy.
Gene Ther. 2017 Mar;24(3):144-150. doi: 10.1038/gt.2016.72. Epub 2016 Oct 31.
8
The Anti-CRISPR Story: A Battle for Survival.
Mol Cell. 2017 Oct 5;68(1):8-14. doi: 10.1016/j.molcel.2017.09.002.
9
Discovering the Genome-Wide Activity of CRISPR-Cas Nucleases.
ACS Chem Biol. 2018 Feb 16;13(2):305-308. doi: 10.1021/acschembio.7b00847. Epub 2017 Dec 27.
10
Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.
Mol Cells. 2015 Jun;38(6):475-81. doi: 10.14348/molcells.2015.0103. Epub 2015 May 19.

本文引用的文献

1
Systemic mechanisms of necrotic cell debris clearance.
Cell Death Dis. 2024 Aug 1;15(8):557. doi: 10.1038/s41419-024-06947-5.
2
An HIV-1 CRISPR-Cas9 membrane trafficking screen reveals a role for PICALM intersecting endolysosomes and immunity.
iScience. 2024 May 27;27(6):110131. doi: 10.1016/j.isci.2024.110131. eCollection 2024 Jun 21.
3
Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex.
Cell Res. 2024 Aug;34(8):545-555. doi: 10.1038/s41422-024-00981-w. Epub 2024 Jun 4.
4
Synthetic molecular switches driven by DNA-modifying enzymes.
Nat Commun. 2024 May 6;15(1):3781. doi: 10.1038/s41467-024-47742-2.
5
Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023).
Life Sci. 2024 Jul 1;348:122685. doi: 10.1016/j.lfs.2024.122685. Epub 2024 May 6.
6
CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing.
Nat Commun. 2024 Apr 24;15(1):3478. doi: 10.1038/s41467-024-47800-9.
7
Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells.
Adv Sci (Weinh). 2024 Jun;11(23):e2310255. doi: 10.1002/advs.202310255. Epub 2024 Apr 10.
8
Past, present, and future of CRISPR genome editing technologies.
Cell. 2024 Feb 29;187(5):1076-1100. doi: 10.1016/j.cell.2024.01.042.
9
Precise genome-editing in human diseases: mechanisms, strategies and applications.
Signal Transduct Target Ther. 2024 Feb 26;9(1):47. doi: 10.1038/s41392-024-01750-2.
10
CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections.
Int J Mol Sci. 2023 Dec 26;25(1):334. doi: 10.3390/ijms25010334.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验