Suppr超能文献

基于YOLOv8算法辅助检测膝关节MRI图像上的髌骨不稳或脱位

YOLOv8 algorithm-aided detection of patellar instability or dislocation on knee joint MRI images.

作者信息

Li Ting, Gharaibeh Nadeer M, Jia Shanru, Qinaer Zierdi, Aihemaiti Saidaitiguli, HaNaTe AiShengBaTi, Wu Gang

机构信息

Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College affiliated to Huazhong University of Science and Technology, Wuhan, Hubei, PR China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.

出版信息

Acta Radiol. 2025 Mar;66(3):264-268. doi: 10.1177/02841851241300617. Epub 2024 Dec 16.

Abstract

BackgroundPatellar instability (PI) or patellar dislocation (PD) is challenging to diagnose accurately based on medical history and clinical manifestations alone. While X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) are commonly employed for detecting PI or PD, computer vision has not yet been widely utilized for this purpose.PurposeTo explore the feasibility of computer vision, specifically the You Only Look Once (YOLO) algorithm, in identifying patellar instability or dislocation.Material and MethodsA total of 550 patients (190 diagnosed with patellar instability or dislocation) were divided into a training set (n = 360), validation set (n = 90), and external test set (n = 100). Four indicators were measured on transverse knee MRI scans to determine the presence of patellar instability, and 450 images were labeled using Labelme software. YOLO version 8 (YOLOv8) was refined using these labeled images and validated on 100 unlabeled images. The diagnostic accuracy of YOLOv8 was compared with that of a junior radiologist.ResultsThe sensitivity, specificity, and accuracy of the refined YOLO model and the junior radiologist were 62%, 97%, and 83%, and 62%, 82%, and 74%, respectively. Although the YOLO model demonstrated slightly higher accuracy, the difference did not reach statistical significance ( = 0.093). The YOLO model required approximately 14.01 ± 10.34 ms to interpret each image, significantly shorter than the 9.55 ± 2.39 s required by the radiologist ( < 0.001).ConclusionThe refined YOLOv8 model is not inferior to junior radiologists in identifying patellar instability or dislocation and offers a significantly faster interpretation time.

摘要

背景

髌股关节不稳(PI)或髌骨脱位(PD)仅基于病史和临床表现很难准确诊断。虽然X线、计算机断层扫描(CT)和磁共振成像(MRI)常用于检测PI或PD,但计算机视觉尚未广泛用于此目的。

目的

探讨计算机视觉,特别是你只看一次(YOLO)算法在识别髌股关节不稳或脱位方面的可行性。

材料与方法

总共550例患者(190例诊断为髌股关节不稳或脱位)被分为训练集(n = 360)、验证集(n = 90)和外部测试集(n = 100)。在膝关节横轴位MRI扫描上测量四个指标以确定髌股关节不稳的存在,并使用Labelme软件标记450张图像。使用这些标记图像对YOLO版本8(YOLOv8)进行优化,并在100张未标记图像上进行验证。将YOLOv8的诊断准确性与初级放射科医生的诊断准确性进行比较。

结果

优化后的YOLO模型和初级放射科医生的敏感性、特异性和准确性分别为62%、97%和83%,以及62%、82%和74%。虽然YOLO模型的准确性略高,但差异未达到统计学意义(P = 0.093)。YOLO模型解释每张图像大约需要14.01±10.34毫秒,明显短于放射科医生所需的9.55±2.39秒(P < 0.001)。

结论

优化后的YOLOv8模型在识别髌股关节不稳或脱位方面不劣于初级放射科医生,且解释时间明显更快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验