Suppr超能文献

基于CT图像的YOLOv12算法辅助检测和分类外踝撕脱骨折及腓骨小头下小骨:一项多中心研究。

YOLOv12 Algorithm-Aided Detection and Classification of Lateral Malleolar Avulsion Fracture and Subfibular Ossicle Based on CT Images: A Multicenter Study.

作者信息

Liu Jiayi, Sun Peng, Yuan Yousheng, Chen Zihan, Tian Ke, Gao Qian, Li Xiangsheng, Xia Liang, Zhang Jun, Xu Nan

机构信息

Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu, 211002, P.R. China., Nanjing, CN.

Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.

出版信息

JMIR Med Inform. 2025 Sep 9. doi: 10.2196/79064.

Abstract

BACKGROUND

Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice. Deep convolutional neural networks (DCNNs) have shown promise in musculoskeletal imaging diagnostics, but robust, multicenter evidence in this specific context is lacking.

OBJECTIVE

To evaluate several state-of-the-art DCNNs-including the latest YOLOv12 algorithm - for detecting and classifying LMAF and SFO on CT images, using MRI-based diagnoses as the gold standard, and to compare model performance with radiologists reading CT alone.

METHODS

In this retrospective study, 1,918 patients (LMAF: 1253, SFO: 665) were enrolled from two hospitals in China between 2014 and 2024. MRI served as the gold standard and was independently interpreted by two senior musculoskeletal radiologists. Only CT images were used for model training, validation, and testing. CT images were manually annotated with bounding boxes. The cohort was randomly split into a training set (n=1,092), internal validation set (n=476), and external test set (n=350). Four deep learning models - Faster R-CNN, SSD, RetinaNet, and YOLOv12 - were trained and evaluated using identical procedures. Model performance was assessed using mean average precision at IoU=0.5 (mAP50), area under the receiver-operating curve (AUC), accuracy, sensitivity, and specificity. The external test set was also independently interpreted by two musculoskeletal radiologists with 7 and 15 years of experience, with results compared to the best performing model. Saliency maps were generated using Shapley values to enhance interpretability.

RESULTS

Among the evaluated models, YOLOv12 achieved the highest detection and classification performance, with a mAP50 of 92.1% and an AUC of 0.983 on the external test set - significantly outperforming Faster R-CNN (mAP50: 63.7%, AUC: 0.79), SSD (mAP50 63.0%, AUC 0.63), and RetinaNet (mAP50: 67.0%, AUC: 0.73) (all P < .05). When using CT alone, radiologists performed at a moderate level (accuracy: 75.6%/69.1%; sensitivity: 75.0%/65.2%; specificity: 76.0%/71.1%), whereas YOLOv12 approached MRI-based reference performance (accuracy: 92.0%; sensitivity: 86.7%; specificity: 82.2%). Saliency maps corresponded well with expert-identified regions.

CONCLUSIONS

While MRI (read by senior radiologists) is the gold standard for distinguishing LMAF from SFO, CT-based differentiation is challenging for radiologists. A CT-only DCNN (YOLOv12) achieved substantially higher performance than radiologists reading CT alone and approached the MRI-based reference standard, highlighting its potential to augment CT-based decision-making where MRI is limited or unavailable.

摘要

背景

外踝撕脱骨折(LMAF)和腓骨下小骨(SFO)是不同的实体,在影像学上均表现为外踝附近的小骨碎片,但需要不同的治疗策略。临床和影像学鉴别具有挑战性,这可能会妨碍及时、精确的管理。在影像学方面,磁共振成像(MRI)是区分LMAF和SFO的诊断金标准,而仅依靠计算机断层扫描(CT)进行影像学鉴别在常规实践中具有挑战性。深度卷积神经网络(DCNN)在肌肉骨骼成像诊断中已显示出前景,但在这一特定背景下缺乏有力的多中心证据。

目的

以基于MRI的诊断为金标准,评估几种先进的DCNN(包括最新的YOLOv12算法)在CT图像上检测和分类LMAF和SFO的能力,并将模型性能与仅阅读CT的放射科医生进行比较。

方法

在这项回顾性研究中,2014年至2024年间从中国两家医院招募了1918例患者(LMAF:1253例,SFO:665例)。MRI作为金标准,由两名资深肌肉骨骼放射科医生独立解读。仅使用CT图像进行模型训练、验证和测试。CT图像用边界框进行手动标注。该队列被随机分为训练集(n = 1092)、内部验证集(n = 476)和外部测试集(n = 350)。使用相同的程序训练和评估四种深度学习模型——Faster R-CNN、SSD、RetinaNet和YOLOv12。使用IoU = 0.5时的平均精度均值(mAP50)、受试者操作特征曲线下面积(AUC)、准确率、敏感性和特异性来评估模型性能。外部测试集也由两名分别具有7年和15年经验的肌肉骨骼放射科医生独立解读,并将结果与表现最佳的模型进行比较。使用Shapley值生成显著性图以增强可解释性。

结果

在评估的模型中,YOLOv12在外部测试集上实现了最高的检测和分类性能,mAP50为92.1%,AUC为0.983,显著优于Faster R-CNN(mAP50:63.7%,AUC:0.79)、SSD(mAP50 63.0%,AUC 0.63)和RetinaNet(mAP50:67.0%,AUC:0.73)(所有P < 0.05)。仅使用CT时,放射科医生的表现处于中等水平(准确率:75.6%/69.1%;敏感性:75.0%/65.2%;特异性:76.0%/71.1%),而YOLOv12接近基于MRI的参考性能(准确率:92.0%;敏感性:86.7%;特异性:82.2%)。显著性图与专家识别的区域吻合良好。

结论

虽然MRI(由资深放射科医生解读)是区分LMAF和SFO的金标准,但基于CT的鉴别对放射科医生来说具有挑战性。仅基于CT的DCNN(YOLOv12)的性能显著高于仅阅读CT的放射科医生,并且接近基于MRI的参考标准,突出了其在MRI受限或无法获得时增强基于CT的决策制定的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验