Suppr超能文献

通过持续血糖监测和基因分析增强1型糖尿病免疫风险预测

Enhancing Type 1 Diabetes Immunological Risk Prediction with Continuous Glucose Monitoring and Genetic Profiling.

作者信息

Montaser Eslam, Farhy Leon S, Rich Stephen S

机构信息

Division of Endocrinology and Metabolism, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.

出版信息

Diabetes Technol Ther. 2025 Apr;27(4):292-300. doi: 10.1089/dia.2024.0496. Epub 2024 Dec 17.

Abstract

Early identification of individuals at high risk for type 1 diabetes (T1D) is essential for timely intervention. Islet autoantibodies (AB) and continuous glucose monitoring (CGM) reveal early signs of glycemic dysregulation, while T1D genetic risk scores (GRS) further improve disease prediction. We use CGM data and T1D GRS to develop an AB classifier (1 AB vs. ≥2 AB) and predict early T1D risk. Thirty-nine AB-positive (18 with 1 and 21 with ≥2 AB) healthy relatives of T1D (mean age 22.1 ± 11.1 years, HbA1c 5.3 ± 0.3%, body mass index 24.1 ± 5.8 kg/m) were enrolled in a National Institutes of Health's (NIH) TrialNet ancillary study. Participants wore CGMs for a week and consumed three standardized liquid mixed meals (SLMM). Post-SLMM CGM glycemic features and T1D GRS were used in a linear support vector machine (SVM) model with recursive feature elimination (RFE) for AB classification, evaluated via fivefold cross-validation using the receiver operating characteristic and precision-recall area under the curve (AUC-ROC/PR). Significant differences between the AB groups were observed in the post-SLMM percent time of glucose >180 mg/dL and GRS ( = 0.020 and = 0.001, respectively). An SVM model with two RFE-selected features (T1D GRS and incremental AUC) achieved the best performance, classifying 1 versus ≥2 AB individuals with an AUC-ROC of 0.93 (95% confidence interval [CI]: 0.83-1.00) and AUC-PR of 0.89 (95% CI: 0.71-0.99), compared with AUC-ROC of 0.80 (95% CI: 0.46-1.00) and AUC-PR of 0.82 (95% CI: 0.71-0.93) using all features. A machine learning approach combining a 1-week CGM home test and T1D GRS reliably assesses T1D immunological risk, enabling early intervention.

摘要

早期识别1型糖尿病(T1D)高危个体对于及时干预至关重要。胰岛自身抗体(AB)和持续葡萄糖监测(CGM)可揭示血糖调节异常的早期迹象,而T1D遗传风险评分(GRS)则进一步改善疾病预测。我们使用CGM数据和T1D GRS来开发一个AB分类器(1种AB与≥2种AB)并预测早期T1D风险。39名T1D健康亲属(平均年龄22.1±11.1岁,糖化血红蛋白5.3±0.3%,体重指数24.1±5.8kg/m²)AB呈阳性(18人有1种AB,21人有≥2种AB),参加了美国国立卫生研究院(NIH)的TrialNet辅助研究。参与者佩戴CGM一周,并食用三份标准化液体混合餐(SLMM)。SLMM后CGM血糖特征和T1D GRS被用于线性支持向量机(SVM)模型,并采用递归特征消除(RFE)进行AB分类,通过使用曲线下面积(AUC-ROC/PR)的五折交叉验证进行评估。在SLMM后血糖>180mg/dL的时间百分比和GRS方面,AB组之间观察到显著差异(分别为P = 0.020和P = 0.001)。一个具有两个经RFE选择特征(T1D GRS和增量AUC)的SVM模型表现最佳,对1种AB与≥2种AB个体进行分类时,AUC-ROC为0.93(95%置信区间[CI]:0.83 - 1.00),AUC-PR为0.89(95%CI:0.71 - 0.99),而使用所有特征时AUC-ROC为0.80(95%CI:0.46 - 1.00),AUC-PR为0.82(95%CI:0.71 - 0.93)。一种结合1周CGM家庭测试和TID GRS的机器学习方法能够可靠地评估T1D免疫风险,从而实现早期干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验