Suppr超能文献

基于连续血糖监测数据动态变化的糖尿病新型检测与进展标志物

Novel Detection and Progression Markers for Diabetes Based on Continuous Glucose Monitoring Data Dynamics.

作者信息

Montaser Eslam, Farhy Leon S, Kovatchev Boris P

机构信息

Division of Endocrinology and Metabolism, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA.

出版信息

J Clin Endocrinol Metab. 2024 Dec 18;110(1):254-262. doi: 10.1210/clinem/dgae379.

Abstract

CONTEXT

Static measures of continuous glucose monitoring (CGM) data, such as time spent in specific glucose ranges (70-180 mg/dL or 70-140 mg/dL), do not fully capture the dynamic nature of blood glucose, particularly the subtle gradual deterioration of glycemic control over time in individuals with early-stage type 1 diabetes.

OBJECTIVE

Develop a diabetes diagnostic tool based on 2 markers of CGM dynamics: CGM entropy rate (ER) and Poincaré plot (PP) ellipse area (S).

METHODS

A total of 5754 daily CGM profiles from 843 individuals with type 1, type 2 diabetes, or healthy individuals with or without islet autoantibody status were used to compute 2 individual dynamic markers: ER (in bits per transition; BPT) of daily probability matrices describing CGM transitions between 8 glycemic states, and the area S (mg2/dL2) of individual CGM PP ellipses using standard PP descriptors. The Youden index was used to determine "optimal" cut-points for ER and S for health vs diabetes (case 1); type 1 vs type 2 (case 2); and low vs high type 1 immunological risk (case 3). The markers' discriminative power was assessed through the area under the receiver operating characteristics curves (AUC).

RESULTS

Optimal cutoff points were determined for ER and S for each of the 3 cases. ER and S discriminated case 1 with AUC = 0.98 (95% CI, 0.97-0.99) and AUC = 0.99 (95% CI, 0.99-1.00), respectively (cutoffs ERcase1 = 0.76 BPT, Scase1 = 1993.91 mg2/dL2), case 2 with AUC = 0.81 (95% CI, 0.77-0.84) and AUC = 0.76 (95% CI, 0.72-0.81), respectively (ERcase2 = 1.00 BPT, Scase2 = 5112.98 mg2/dL2), and case 3 with AUC = 0.72 (95% CI, 0.58-0.86), and AUC = 0.66 (95% CI, 0.47-0.86), respectively (ERcase3 = 0.52 BPT, Scase3 = 923.65 mg2/dL2).

CONCLUSION

CGM dynamics markers can be an alternative to fasting plasma glucose or glucose tolerance testing to identify individuals at higher immunological risk of progressing to type 1 diabetes.

摘要

背景

连续血糖监测(CGM)数据的静态指标,如处于特定血糖范围(70 - 180mg/dL或70 - 140mg/dL)的时间,不能完全捕捉血糖的动态特性,尤其是1型糖尿病早期患者血糖控制随时间的细微逐渐恶化情况。

目的

基于CGM动态的两个标志物开发一种糖尿病诊断工具:CGM熵率(ER)和庞加莱图(PP)椭圆面积(S)。

方法

共使用了来自843名1型、2型糖尿病患者或有或无胰岛自身抗体状态的健康个体的5754份每日CGM数据,以计算两个个体动态标志物:描述8种血糖状态之间CGM转换的每日概率矩阵的ER(以每次转换的比特数计;BPT),以及使用标准PP描述符计算个体CGM PP椭圆的面积S(mg²/dL²)。尤登指数用于确定健康与糖尿病(病例1)、1型与2型(病例2)以及1型低免疫风险与高免疫风险(病例3)的ER和S的“最佳”切点。通过受试者操作特征曲线下面积(AUC)评估标志物的鉴别能力。

结果

确定了3种情况中每种情况的ER和S的最佳截断点。ER和S对病例1的鉴别AUC分别为0.98(95%CI,0.97 - 0.99)和0.99(95%CI,0.99 - 1.00)(截断点ERcase1 = 0.76 BPT,Scase1 = 1993.91mg²/dL²),对病例2的鉴别AUC分别为0.81(95%CI,0.77 - 0.84)和0.76(95%CI,0.72 - 0.81)(ERcase2 = 1.00 BPT,Scase2 = 5112.98mg²/dL²),对病例3的鉴别AUC分别为0.72(95%CI,0.58 - 0.86)和0.66(95%CI,0.47 - 0.86)(ERcase3 = 0.52 BPT,Scase3 = 923.65mg²/dL²)。

结论

CGM动态标志物可作为空腹血糖或葡萄糖耐量试验的替代方法,用于识别进展为1型糖尿病免疫风险较高的个体。

相似文献

1
Novel Detection and Progression Markers for Diabetes Based on Continuous Glucose Monitoring Data Dynamics.
J Clin Endocrinol Metab. 2024 Dec 18;110(1):254-262. doi: 10.1210/clinem/dgae379.
2
Enhancing Type 1 Diabetes Immunological Risk Prediction with Continuous Glucose Monitoring and Genetic Profiling.
Diabetes Technol Ther. 2025 Apr;27(4):292-300. doi: 10.1089/dia.2024.0496. Epub 2024 Dec 17.
3
Discrimination and Precision of Continuous Glucose Monitoring in Staging Children With Presymptomatic Type 1 Diabetes.
J Clin Endocrinol Metab. 2025 May 19;110(6):1624-1632. doi: 10.1210/clinem/dgae691.
6
Continuous Glucose Monitoring Predicts Progression to Diabetes in Autoantibody Positive Children.
J Clin Endocrinol Metab. 2019 Aug 1;104(8):3337-3344. doi: 10.1210/jc.2018-02196.
7
Development of a three-dimensional scoring model for the assessment of continuous glucose monitoring data in type 1 diabetes.
BMJ Open Diabetes Res Care. 2024 Sep 5;12(4):e004350. doi: 10.1136/bmjdrc-2024-004350.

引用本文的文献

1
Association Between Triglyceride-Glucose Index and Malignant Risk in Thyroid Nodules: A Cross-Sectional Analysis.
J Inflamm Res. 2025 Aug 19;18:11285-11297. doi: 10.2147/JIR.S533131. eCollection 2025.
2
Evaluating Insulin Delivery Systems Using Dynamic Glucose Region Plots and Risk Space Analysis.
Sensors (Basel). 2025 Aug 4;25(15):4788. doi: 10.3390/s25154788.
4
The Use of Continuous Glucose Monitoring to Diagnose Stage 2 Type 1 Diabetes.
J Diabetes Sci Technol. 2025 May 30:19322968251333441. doi: 10.1177/19322968251333441.
5
Predictive factors of hypoglycemia in type 2 diabetes: a prospective study using machine learning.
Sci Rep. 2025 May 25;15(1):18143. doi: 10.1038/s41598-025-03030-7.
8
A pretrained transformer model for decoding individual glucose dynamics from continuous glucose monitoring data.
Natl Sci Rev. 2025 Feb 8;12(5):nwaf039. doi: 10.1093/nsr/nwaf039. eCollection 2025 May.

本文引用的文献

5
Diagnosis and Management of Prediabetes: A Review.
JAMA. 2023 Apr 11;329(14):1206-1216. doi: 10.1001/jama.2023.4063.
7
2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023.
Diabetes Care. 2023 Jan 1;46(Suppl 1):S19-S40. doi: 10.2337/dc23-S002.
8
Essential Continuous Glucose Monitoring Metrics: The Principal Dimensions of Glycemic Control in Diabetes.
Diabetes Technol Ther. 2022 Nov;24(11):797-804. doi: 10.1089/dia.2022.0104. Epub 2022 Jul 5.
10
Carbohydrate Intake Prior to Oral Glucose Tolerance Testing.
J Endocr Soc. 2021 Mar 29;5(5):bvab049. doi: 10.1210/jendso/bvab049. eCollection 2021 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验