Zhang Rongrong, Wu Qilong, Han Yun, Zhang Yaowen, Wu Xiaofeng, Zeng Jianrong, Huang Keke, Du Aijun, Chen Jun, Zhou Dong, Yao Xiangdong
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.
Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia.
Small. 2025 Jan;21(4):e2408266. doi: 10.1002/smll.202408266. Epub 2024 Dec 17.
Defect engineering is widely regarded as a promising strategy to enhance the performance of electrocatalysts for water splitting. In this work, defective NiFe layered double hydroxide (NiFe LDH) with a high density of edge sites (edge-rich NiFe LDH) is synthesized via a simple reduction process during the early stages of nucleation. The introduction of edges into oxygen evolution reaction (OER) catalysts modulates the electronic structure of the active sites. X-ray absorption spectroscopy (XAS) analyses revealed that the edges facilitated the formation of unsaturated Ni-Ni coordination, which is crucial for promoting the deprotonation of the OH intermediate. Consequently, the edge-rich NiFe LDH exhibited a significantly lower overpotential of 228 mV to achieve a current density of 10 mA cm⁻, compared to 275 mV for pristine NiFe LDH. The assembled membrane electrode can reach a current density of 1000 mA cm⁻ at a cell voltage of 2.5 V. This study highlights the role of edge effects in defect engineering to enhance OER activity and provides valuable theoretical insights for the design of efficient electrocatalysts.
缺陷工程被广泛认为是一种提高用于水分解的电催化剂性能的有前景的策略。在这项工作中,通过在成核早期的简单还原过程合成了具有高密度边缘位点的缺陷型镍铁层状双氢氧化物(NiFe LDH)(富边缘NiFe LDH)。将边缘引入析氧反应(OER)催化剂中可调节活性位点的电子结构。X射线吸收光谱(XAS)分析表明,边缘促进了不饱和Ni-Ni配位的形成,这对于促进OH中间体的去质子化至关重要。因此,与原始NiFe LDH的275 mV相比,富边缘NiFe LDH在实现10 mA cm⁻的电流密度时表现出显著更低的过电位,为228 mV。组装的膜电极在2.5 V的电池电压下可达到1000 mA cm⁻的电流密度。这项研究突出了边缘效应在缺陷工程中增强OER活性的作用,并为高效电催化剂的设计提供了有价值的理论见解。