Suppr超能文献

人工智能驱动的欺诈与在线调查诚信的侵蚀:对31种欺诈检测策略的分析

AI-powered fraud and the erosion of online survey integrity: an analysis of 31 fraud detection strategies.

作者信息

Pinzón Natalia, Koundinya Vikram, Galt Ryan E, Dowling William O'R, Baukloh Marcela, Taku-Forchu Namah C, Schohr Tracy, Roche Leslie M, Ikendi Samuel, Cooper Mark, Parker Lauren E, Pathak Tapan B

机构信息

Geography Graduate Group, University of California, Davis, Davis, CA, United States.

Rhizobia LLC, San Francisco, CA, United States.

出版信息

Front Res Metr Anal. 2024 Dec 2;9:1432774. doi: 10.3389/frma.2024.1432774. eCollection 2024.

Abstract

The proliferation of AI-powered bots and sophisticated fraudsters poses a significant threat to the integrity of scientific studies reliant on online surveys across diverse disciplines, including health, social, environmental and political sciences. We found a substantial decline in usable responses from online surveys from 75 to 10% in recent years due to survey fraud. Monetary incentives attract sophisticated fraudsters capable of mimicking genuine open-ended responses and verifying information submitted months prior, showcasing the advanced capabilities of online survey fraud today. This study evaluates the efficacy of 31 fraud indicators and six ensembles using two agriculture surveys in California. To evaluate the performance of each indicator, we use predictive power and recall. Predictive power is a novel variation of precision introduced in this study, and both are simple metrics that allow for non-academic survey practitioners to replicate our methods. The best indicators included a novel email address score, MinFraud Risk Score, consecutive submissions, opting-out of incentives, improbable location.

摘要

人工智能驱动的机器人和老练的欺诈者的激增,对包括健康、社会、环境和政治科学在内的不同学科中依赖在线调查的科学研究的完整性构成了重大威胁。我们发现,由于调查欺诈,近年来在线调查中可用回复率从75%大幅下降至10%。金钱激励吸引了能够模仿真实开放式回复并核实数月前提交信息的老练欺诈者,展示了当今在线调查欺诈的先进能力。本研究使用加利福尼亚州的两项农业调查评估了31个欺诈指标和六种集成方法的有效性。为了评估每个指标的性能,我们使用预测能力和召回率。预测能力是本研究中引入的一种新颖的精确率变体,两者都是简单的指标,使非学术调查从业者能够复制我们的方法。最佳指标包括一个新颖的电子邮件地址评分、MinFraud风险评分、连续提交、拒绝激励、不合理的位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2948/11646990/9f5797435078/frma-09-1432774-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验