Jo Hyeonmin, Lee Jun-Won, Kwon Eunji, Yu Seungho, Kim Byung Gon, Park Seongsoo, Moon Janghyuk, Ko Min Jae, Lim Hee-Dae
Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Energy Storage Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
ACS Nano. 2024 Dec 31;18(52):35718-35728. doi: 10.1021/acsnano.4c15556. Epub 2024 Dec 17.
Dendritic challenges in Li metal batteries are commonly resolved using porous three-dimensional (3D) current collectors, which have a significant issue in that Li is deposited from the top (top growth) of the structure rather than from the bottom (bottom growth), failing to effectively suppress dendrite growth and volumetric expansion. We propose the structure incorporating a gradient lithiophilic seed within a 3D framework by pulse electroplating Mg, specifically targeting the near bottom to promote bottom growth and achieve dense Li deposition. This method achieves precise control over the catalytic seed size and distribution. Optimal conditions for maximizing the catalytic effect are identified. The resulting Mg-gradient porous-Cu structure exhibits superior Li-plating behavior with bottom growth, significantly reducing dendrite formation and improving cycle life. The mechanistic origin of bottom-guided Li growth is supported by DFT and 3D simulation results. This method presents a significant step forward in developing high-performance Li-metal batteries.
锂金属电池中的枝晶挑战通常通过使用多孔三维(3D)集流体来解决,然而这存在一个重大问题,即锂是从结构的顶部(顶部生长)而非底部(底部生长)沉积,无法有效抑制枝晶生长和体积膨胀。我们提出了一种通过脉冲电镀镁在3D框架内结合梯度亲锂种子的结构,特别针对靠近底部的区域以促进底部生长并实现致密锂沉积。该方法实现了对催化种子尺寸和分布的精确控制。确定了使催化效果最大化的最佳条件。所得的镁梯度多孔铜结构表现出具有底部生长的优异锂电镀行为,显著减少枝晶形成并提高循环寿命。密度泛函理论(DFT)和三维模拟结果支持了底部引导锂生长的机理起源。该方法在开发高性能锂金属电池方面迈出了重要一步。