Suppr超能文献

用于鉴别严重发热伴血小板减少综合征(SFTS)患者病情及临床预后的双转录本特征:一项双盲、多中心验证研究

Two-transcript signature for differentiation and clinical outcomes in severe fever with thrombocytopenia syndrome (SFTS) patients: a double-blind, multicenter, validation study.

作者信息

Xu Nannan, Wen Sai, Yao Yongyuan, Guan Yanyan, Zhao Lianhui, Yang Lulu, Yang Hui, He Yishan, Wang Gang

机构信息

Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Juxian People's Hospital, Rizhao, China.

出版信息

J Clin Microbiol. 2025 Jan 31;63(1):e0128224. doi: 10.1128/jcm.01282-24. Epub 2024 Dec 17.

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high mortality rate that is often underdiagnosed due to the limitations of current laboratory testing. Timely diagnosis and early identification of severe cases are crucial to improving patient outcomes and overall survival rates. This study aimed to evaluate the efficacy of two transcripts, IFI44L and PI3, in the early differentiation between SFTS virus (SFTSV) infection and bacterial sepsis, as well as in the prompt identification of severe cases during epidemic seasons. In a prospective study conducted between 1 May 2021 and 30 September 2022, we enrolled 225 patients who presented with acute fever and thrombocytopenia at four hospitals in Shandong Province, China. The two-transcript signature provided a clear distinction between SFTS and bacterial infection, achieving an area under the receiver operating characteristic curve of 0.961 (95% confidence interval [95% CI] 0.916-0.986), outperforming C-reactive protein (0.810 [95% CI 0.738-0.870]) and procalcitonin (0.764 [95% CI 0.687-0.830]). Importantly, the relative expression of the IFI44L gene was significantly elevated in fatal SFTS cases, with an area under the curve (AUC) of 0.820 (95% CI 0.727-0.914), indicating its potential as an early prognostic marker. Additionally, IFI44L and PI3 were identified as potential biomarkers for distinguishing SFTS patients with and without invasive pulmonary aspergillosis, with AUC values of 0.817 and 0.753, respectively. Our findings demonstrate that the two-transcript signature effectively distinguishes SFTSV infection from bacterial sepsis and helps identify high-risk individuals, guiding appropriate treatment during SFTS outbreak.

摘要

发热伴血小板减少综合征(SFTS)是一种新出现的传染病,死亡率高,由于目前实验室检测的局限性,该病常常诊断不足。及时诊断和早期识别重症病例对于改善患者预后和总体生存率至关重要。本研究旨在评估两种转录本IFI44L和PI3在早期区分SFTS病毒(SFTSV)感染与细菌性败血症以及在流行季节快速识别重症病例方面的效能。在2021年5月1日至2022年9月30日进行的一项前瞻性研究中,我们纳入了中国山东省四家医院225例出现急性发热和血小板减少的患者。双转录本特征能够清晰区分SFTS和细菌感染,受试者操作特征曲线下面积为0.961(95%置信区间[95%CI]0.916-0.986),优于C反应蛋白(0.810[95%CI0.738-0.870])和降钙素原(0.764[95%CI0.687-0.830])。重要的是,IFI44L基因的相对表达在SFTS死亡病例中显著升高,曲线下面积(AUC)为0.820(95%CI0.727-0.914),表明其作为早期预后标志物的潜力。此外,IFI44L和PI3被确定为区分有无侵袭性肺曲霉病的SFTS患者的潜在生物标志物,AUC值分别为0.817和0.753。我们的研究结果表明,双转录本特征能有效区分SFTSV感染与细菌性败血症,并有助于识别高危个体,在SFTS暴发期间指导适当治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ead/11784442/df62146d2703/jcm.01282-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验