Suppr超能文献

多媒体:微生物组数据的多模态中介分析

Multimedia: multimodal mediation analysis of microbiome data.

作者信息

Jiang Hanying, Miao Xinran, Thairu Margaret W, Beebe Mara, Grupe Dan W, Davidson Richard J, Handelsman Jo, Sankaran Kris

机构信息

Statistics Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Microbiol Spectr. 2025 Feb 4;13(2):e0113124. doi: 10.1128/spectrum.01131-24. Epub 2024 Dec 17.

Abstract

UNLABELLED

Mediation analysis has emerged as a versatile tool for answering mechanistic questions in microbiome research because it provides a statistical framework for attributing treatment effects to alternative causal pathways. Using a series of linked regressions, this analysis quantifies how complementary data relate to one another and respond to treatments. Despite these advances, existing software's rigid assumptions often result in users viewing mediation analysis as a black box. We designed the multimedia R package to make advanced mediation analysis techniques accessible, ensuring that statistical components are interpretable and adaptable. The package provides a uniform interface to direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis, enabling experimentation with various mediator and outcome models while maintaining a simple overall workflow. The software includes modules for regularized linear, compositional, random forest, hierarchical, and hurdle modeling, making it well-suited to microbiome data. We illustrate the package through two case studies. The first re-analyzes a study of the microbiome and metabolome of Inflammatory Bowel Disease patients, uncovering potential mechanistic interactions between the microbiome and disease-associated metabolites, not found in the original study. The second analyzes new data about the influence of mindfulness practice on the microbiome. The mediation analysis highlights shifts in taxa previously associated with depression that cannot be explained indirectly by diet or sleep behaviors alone. A gallery of examples and further documentation can be found at https://go.wisc.edu/830110.

IMPORTANCE

Microbiome studies routinely gather complementary data to capture different aspects of a microbiome's response to a change, such as the introduction of a therapeutic. Mediation analysis clarifies the extent to which responses occur sequentially via mediators, thereby supporting causal, rather than purely descriptive, interpretation. Multimedia is a modular R package with close ties to the wider microbiome software ecosystem that makes statistically rigorous, flexible mediation analysis easily accessible, setting the stage for precise and causally informed microbiome engineering.

摘要

未标注

中介分析已成为微生物组研究中回答机制问题的一种通用工具,因为它提供了一个统计框架,用于将治疗效果归因于替代因果途径。通过一系列链接回归,该分析量化了互补数据之间的相互关系以及对治疗的反应。尽管有这些进展,但现有软件的严格假设常常导致用户将中介分析视为一个黑箱。我们设计了多媒体R包,以使先进的中介分析技术易于使用,确保统计成分是可解释和可调整的。该包为直接和间接效应估计、综合零假设检验、自助置信区间构建和敏感性分析提供了统一的接口,能够在保持简单总体工作流程的同时,对各种中介和结果模型进行实验。该软件包括用于正则化线性、成分、随机森林、分层和障碍建模的模块,非常适合微生物组数据。我们通过两个案例研究来说明该包。第一个案例重新分析了一项关于炎症性肠病患者微生物组和代谢组的研究,发现了微生物组与疾病相关代谢物之间潜在的机制相互作用,这在原始研究中并未发现。第二个案例分析了关于正念练习对微生物组影响的新数据。中介分析突出了以前与抑郁症相关的分类群的变化,这些变化不能仅通过饮食或睡眠行为间接解释。示例库和进一步的文档可在https://go.wisc.edu/830110找到。

重要性

微生物组研究经常收集互补数据以捕捉微生物组对变化(如引入治疗方法)反应的不同方面。中介分析阐明了反应通过中介依次发生的程度,从而支持因果而非纯粹描述性的解释。多媒体是一个模块化的R包,与更广泛的微生物组软件生态系统紧密相连,使严格统计且灵活的中介分析易于使用,为精确且基于因果关系的微生物组工程奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61b/11792470/135d567c13ed/spectrum.01131-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验