Thadani Sameer, Wu Tzu-Chun, Wu Danny T Y, Kakajiwala Aadil, Soranno Danielle E, Cortina Gerard, Srivastava Rachana, Gist Katja M, Menon Shina
Department of Pediatric, Division of Critical Care Medicine and Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX.
Department of Biostatistics, Health Informatics, and Data Sciences, University of Cincinnati, Cincinnati, OH.
Crit Care Explor. 2024 Dec 17;6(12):e1188. doi: 10.1097/CCE.0000000000001188. eCollection 2024 Dec 1.
Continuous renal replacement therapy (CRRT) is the favored renal replacement therapy in critically ill patients. Predicting clinical outcomes for CRRT patients is difficult due to population heterogeneity, varying clinical practices, and limited sample sizes.
We aimed to predict survival to ICUs and hospital discharge in children and young adults receiving CRRT using machine learning (ML) techniques.
Patients less than 25 years of age receiving CRRT for acute kidney injury and/or volume overload from 2015 to 2021 (80%).
Internal validation occurred in a testing group of patients from the dataset (20%).
Retrospective international multicenter study utilizing an 80/20 training and testing cohort split, and logistic regression with L2 regularization (LR), decision tree, random forest (RF), gradient boosting machine, and support vector machine with linear kernel to predict ICU and hospital survival. Model performance was determined by the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) due to the imbalance in the dataset.
Of the 933 patients included in this study, 538 (54%) were male with a median age of 8.97 years and interquartile range (1.81-15.0 yr). The ICU mortality was 35% and hospital mortality was 37%. The RF had the best performance for predicting ICU mortality (AUROC, 0.791 and AUPRC, 0.878) and LR for hospital mortality (AUROC, 0.777 and AUPRC, 0.859). The top two predictors of ICU survival were Pediatric Logistic Organ Dysfunction-2 score at CRRT initiation and admission diagnosis of respiratory failure.
These are the first ML models to predict survival at ICU and hospital discharge in children and young adults receiving CRRT. RF outperformed other models for predicting ICU mortality. Future studies should expand the input variables, conduct a more sophisticated feature selection, and use deep learning algorithms to generate more precise models.
连续性肾脏替代治疗(CRRT)是重症患者首选的肾脏替代治疗方法。由于人群异质性、临床实践不同以及样本量有限,预测CRRT患者的临床结局具有挑战性。
我们旨在使用机器学习(ML)技术预测接受CRRT的儿童和青年成人入住重症监护病房(ICU)及出院后的生存率。
2015年至2021年期间因急性肾损伤和/或容量超负荷接受CRRT的25岁以下患者(80%)。
在数据集的一个测试组患者中进行内部验证(20%)。
一项回顾性国际多中心研究,采用80/20的训练和测试队列划分,并使用L2正则化逻辑回归(LR)、决策树、随机森林(RF)、梯度提升机和线性核支持向量机来预测ICU和医院生存率。由于数据集中存在不平衡情况,模型性能由受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)确定。
本研究纳入的933例患者中,538例(54%)为男性,中位年龄为8.97岁,四分位间距为(1.81 - 15.0岁)。ICU死亡率为35%,医院死亡率为37%。RF在预测ICU死亡率方面表现最佳(AUROC为0.791,AUPRC为0.878),而LR在预测医院死亡率方面表现最佳(AUROC为0.777,AUPRC为0.859)。ICU生存的前两个预测因素是CRRT开始时的小儿逻辑器官功能障碍 - 2评分和入院时的呼吸衰竭诊断。
这些是首批用于预测接受CRRT的儿童和青年成人ICU及出院后生存率的ML模型。RF在预测ICU死亡率方面优于其他模型。未来的研究应扩大输入变量,进行更复杂的特征选择,并使用深度学习算法来生成更精确的模型。