Suppr超能文献

急性肾损伤患者无肾脏替代治疗生存期预测方法的比较

Comparison of Approaches for Prediction of Renal Replacement Therapy-Free Survival in Patients with Acute Kidney Injury.

作者信息

Pattharanitima Pattharawin, Vaid Akhil, Jaladanki Suraj K, Paranjpe Ishan, O'Hagan Ross, Chauhan Kinsuk, Van Vleck Tielman T, Duffy Aine, Chaudhary Kumardeep, Glicksberg Benjamin S, Neyra Javier A, Coca Steven G, Chan Lili, Nadkarni Girish N

机构信息

Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.

出版信息

Blood Purif. 2021;50(4-5):621-627. doi: 10.1159/000513700. Epub 2021 Feb 25.

Abstract

BACKGROUND/AIMS: Acute kidney injury (AKI) in critically ill patients is common, and continuous renal replacement therapy (CRRT) is a preferred mode of renal replacement therapy (RRT) in hemodynamically unstable patients. Prediction of clinical outcomes in patients on CRRT is challenging. We utilized several approaches to predict RRT-free survival (RRTFS) in critically ill patients with AKI requiring CRRT.

METHODS

We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify patients ≥18 years old with AKI on CRRT, after excluding patients who had ESRD on chronic dialysis, and kidney transplantation. We defined RRTFS as patients who were discharged alive and did not require RRT ≥7 days prior to hospital discharge. We utilized all available biomedical data up to CRRT initiation. We evaluated 7 approaches, including logistic regression (LR), random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), and MLP with long short-term memory (MLP + LSTM). We evaluated model performance by using area under the receiver operating characteristic (AUROC) curves.

RESULTS

Out of 684 patients with AKI on CRRT, 205 (30%) patients had RRTFS. The median age of patients was 63 years and their median Simplified Acute Physiology Score (SAPS) II was 67 (interquartile range 52-84). The MLP + LSTM showed the highest AUROC (95% CI) of 0.70 (0.67-0.73), followed by MLP 0.59 (0.54-0.64), LR 0.57 (0.52-0.62), SVM 0.51 (0.46-0.56), AdaBoost 0.51 (0.46-0.55), RF 0.44 (0.39-0.48), and XGBoost 0.43 (CI 0.38-0.47).

CONCLUSIONS

A MLP + LSTM model outperformed other approaches for predicting RRTFS. Performance could be further improved by incorporating other data types.

摘要

背景/目的:危重症患者急性肾损伤(AKI)很常见,连续性肾脏替代治疗(CRRT)是血流动力学不稳定患者肾脏替代治疗(RRT)的首选模式。预测接受CRRT治疗患者的临床结局具有挑战性。我们采用多种方法预测需要CRRT的AKI危重症患者的无肾脏替代治疗生存(RRTFS)情况。

方法

我们使用重症监护医学信息集市(MIMIC-III)数据库,识别年龄≥18岁且接受CRRT治疗的AKI患者,排除慢性透析终末期肾病(ESRD)患者和肾移植患者。我们将RRTFS定义为出院时存活且在出院前至少7天未接受RRT的患者。我们利用直至CRRT开始时的所有可用生物医学数据。我们评估了7种方法,包括逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)、自适应增强(AdaBoost)、极端梯度增强(XGBoost)、多层感知器(MLP)以及带有长短期记忆的MLP(MLP + LSTM)。我们通过使用受试者工作特征曲线下面积(AUROC)评估模型性能。

结果

在684例接受CRRT治疗的AKI患者中,205例(30%)患者实现了RRTFS。患者的中位年龄为63岁,其简化急性生理学评分(SAPS)II中位数为67(四分位间距52 - 84)。MLP + LSTM的AUROC(95%置信区间)最高,为0.70(0.67 - 0.73),其次是MLP为0.59(0.54 - 0.64),LR为0.57(0.52 - 0.62),SVM为0.51(0.46 - 0.56),AdaBoost为0.51(0.46 - 0.55),RF为0.44(0.39 - 0.48),XGBoost为0.43(置信区间0.38 - 0.47)。

结论

MLP + LSTM模型在预测RRTFS方面优于其他方法。通过纳入其他数据类型,性能可能会进一步提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验