Suppr超能文献

TEMR:使用大规模全基因组关联研究(GWAS)汇总数据集的跨种族孟德尔随机化方法。

TEMR: Trans-ethnic mendelian randomization method using large-scale GWAS summary datasets.

作者信息

Hou Lei, Wu Sijia, Yuan Zhongshang, Xue Fuzhong, Li Hongkai

机构信息

Department of Medical Data, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China.

Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China.

出版信息

Am J Hum Genet. 2025 Jan 2;112(1):28-43. doi: 10.1016/j.ajhg.2024.11.006. Epub 2024 Dec 16.

Abstract

Available large-scale genome-wide association study (GWAS) summary datasets predominantly stem from European populations, while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, etc., remain comparatively limited, resulting in low precision of causal effect estimations within these ethnicities when using Mendelian randomization (MR). In this paper, we propose a trans-ethnic MR method, TEMR, to improve the statistical power and estimation precision of MR in a target population that is underrepresented, using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates trans-ethnic genetic correlation coefficients through a conditional likelihood-based inference framework, producing calibrated p values with substantially improved MR power. In the simulation study, compared with other existing MR methods, TEMR exhibited superior precision and statistical power in causal effect estimation within the target populations. Finally, we applied TEMR to infer causal relationships between concentrations of 16 blood biomarkers and the risk of developing five diseases (hypertension, ischemic stroke, type 2 diabetes, schizophrenia, and major depression disorder) in East Asian, African, and Hispanic/Latino populations, leveraging biobank-scale GWAS summary data obtained from individuals of European descent. We found that the causal biomarkers were mostly validated by previous MR methods, and we also discovered 17 causal relationships that were not identified using previously published MR methods.

摘要

现有的大规模全基因组关联研究(GWAS)汇总数据集主要来自欧洲人群,而其他种族的样本量相对有限,尤其是中亚/南亚、东亚、非洲、西班牙裔等种族。这导致在使用孟德尔随机化(MR)方法时,这些种族内因果效应估计的精度较低。在本文中,我们提出了一种跨种族MR方法TEMR,利用跨种族大规模GWAS汇总数据集,提高目标人群中代表性不足的MR的统计效力和估计精度。TEMR通过基于条件似然的推理框架纳入跨种族遗传相关系数,产生校准后的p值,大大提高了MR效力。在模拟研究中,与其他现有MR方法相比,TEMR在目标人群的因果效应估计中表现出更高的精度和统计效力。最后,我们应用TEMR,利用从欧洲血统个体获得的生物样本库规模的GWAS汇总数据,推断东亚、非洲和西班牙裔/拉丁裔人群中16种血液生物标志物浓度与五种疾病(高血压、缺血性中风、2型糖尿病、精神分裂症和重度抑郁症)发病风险之间的因果关系。我们发现,因果生物标志物大多已被先前的MR方法验证,我们还发现了17种因果关系,这些关系是使用先前发表的MR方法未识别出来的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42c8/11739928/afed317ce151/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验