Suppr超能文献

在番茄植株中鉴定出一个通常由真菌内生菌诱导的干旱胁迫响应模块,这些真菌内生菌可提高番茄的耐旱性。

Identification of a drought stress response module in tomato plants commonly induced by fungal endophytes that confer increased drought tolerance.

作者信息

González Ortega-Villaizán Adrián, King Eoghan, Patel Manish K, Rodríguez-Dobreva Estefanía, González-Teuber Marcia, Ramos Patricio, Vicente-Carbajosa Jesús, Benito Begoña, Pollmann Stephan

机构信息

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.

Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago, Chile.

出版信息

Plant Mol Biol. 2024 Dec 17;115(1):7. doi: 10.1007/s11103-024-01532-y.

Abstract

Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses. In this study, we investigated the mutualistic interactions between three fungal endophytes originally isolated from distinct arid environments and an agronomically relevant crop, Solanum lycopersicum. We demonstrated a significant increase in shoot biomass under drought conditions in co-cultivation with Penicillium chrysogenum isolated from Antarctica, Penicillium minioluteum isolated from the Atacama Desert, Chile, and Serendipita indica isolated from the Thar Desert, India. To elucidate plant gene modules commonly induced by the different endophytes that could explain the observed drought tolerance effect in tomato, a comprehensive transcriptomics analysis was conducted. This analysis led to the identification of a shared gene module in the fungus-infected tomato plants. Within this module, gene network analysis enabled us to identify genes related to abscisic acid (ABA) signaling, ABA transport, auxin signaling, ion homeostasis, proline biosynthesis, and jasmonic acid signaling, providing insights into the molecular basis of drought tolerance commonly mediated by fungal endophytes. Our findings highlight a conserved response in the mutualistic interactions between endophytic fungi isolated from unrelated environments and tomato roots, resulting in improved shoot biomass production under drought stress.

摘要

全球气候变化加剧了非生物胁迫,因为预计干旱、高温和盐胁迫在未来几年将显著增加。植物与多种微生物共存。已知多种生物间关系能使植物受益,包括促进生长和增强对非生物胁迫的耐受性。在本研究中,我们调查了三种最初从不同干旱环境分离的真菌内生菌与一种具有农学意义的作物——番茄(Solanum lycopersicum)之间的共生相互作用。我们证明,在干旱条件下,与从南极洲分离的产黄青霉、从智利阿塔卡马沙漠分离的微小青霉以及从印度塔尔沙漠分离的印度被孢霉共同培养时,地上部生物量显著增加。为了阐明不同内生菌共同诱导的、可解释番茄中观察到的耐旱效应的植物基因模块,我们进行了全面的转录组学分析。该分析导致在受真菌感染的番茄植株中鉴定出一个共享基因模块。在这个模块内,基因网络分析使我们能够鉴定出与脱落酸(ABA)信号传导、ABA转运、生长素信号传导、离子稳态、脯氨酸生物合成和茉莉酸信号传导相关的基因,从而深入了解真菌内生菌通常介导的耐旱分子基础。我们的研究结果突出了从无关环境分离的内生真菌与番茄根之间共生相互作用中的一种保守反应,导致干旱胁迫下地上部生物量产量提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0666/11652604/59d0f8699f1d/11103_2024_1532_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验