Sánchez-Thomas Rosina, Hernández-Garnica Mariel, Granados-Rivas Juan Carlos, Saavedra Emma, Peñalosa-Castro Ignacio, Rodríguez-Enríquez Sara, Moreno-Sánchez Rafael
Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico.
Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
Mol Biotechnol. 2024 Dec 17. doi: 10.1007/s12033-024-01351-y.
Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.
渗透调节机制参与植物、微藻和其他微生物中重金属的解毒和积累。本综述文章深入分析了与渗透调节密切相关的抗渗透生物及其重金属积累机制。在原核和真核微生物中,如绿藻样原生生物眼虫,渗透胁迫和重金属胁迫具有相似的细胞反应和机制。同样,一些植物已经形成了与盐度、洪水或干旱引起的水分胁迫相关的特定机制,这些机制在重金属胁迫下也会被激活。因此,渗透代谢物的合成以及在重金属暴露下维持细胞内水分含量稳定的策略,通过阻断水分维持系统引发了一种明显的干旱状态。重金属影响细胞的氧化还原状态,触发细胞内水分维持的信号通路,这是由活性氧的浓度介导的。因此,一旦充分阐明与渗透胁迫相关的细胞反应和机制,将为改进重金属污染场地生物修复的机制策略带来新机遇。