Langford Luke, Omar Ahmad K
Department of Materials Science and Engineering, <a href="https://ror.org/01an7q238">University of California, Berkeley</a>, California 94720, USA.
Materials Sciences Division, <a href="https://ror.org/02jbv0t02">Lawrence Berkeley National Laboratory</a>, Berkeley, California 94720, USA.
Phys Rev E. 2024 Nov;110(5-1):054604. doi: 10.1103/PhysRevE.110.054604.
The statistical mechanics of equilibrium interfaces has been well-established for over a half century. In the past decade, a wealth of observations have made increasingly clear that a new perspective is required to describe interfaces arbitrarily far from equilibrium. In this work, beginning from microscopic particle dynamics that break time-reversal symmetry, we derive the linear interfacial dynamics of coexisting motility-induced phases. Doing so allows us to identify the athermal energy scale that excites interfacial fluctuations and the nonequilibrium surface tension that resists these excitations. Our theory identifies that, in contrast to equilibrium fluids, this active surface tension contains contributions arising from nonconservative forces which act to suppress interfacial fluctuations and, crucially, is distinct from the mechanical surface tension of Kirkwood and Buff. We find that the interfacial stiffness scales linearly with the intrinsic persistence length of the constituent active particle trajectories, in agreement with simulation data. We demonstrate that at wavelengths much larger than the persistence length, the interface obeys surface-area minimizing Boltzmann statistics with our derived nonequilibrium interfacial stiffness playing a role identical to that of equilibrium systems.
平衡界面的统计力学已经确立了半个多世纪。在过去十年中,大量的观察结果越来越清楚地表明,需要一个新的视角来描述远离平衡态的任意界面。在这项工作中,我们从打破时间反演对称性的微观粒子动力学出发,推导出共存的运动诱导相的线性界面动力学。这样做使我们能够确定激发界面涨落的无热能标度以及抵抗这些激发的非平衡表面张力。我们的理论表明,与平衡流体不同,这种活性表面张力包含来自非保守力的贡献,这些非保守力起到抑制界面涨落的作用,并且至关重要的是,它与柯克伍德和布夫的机械表面张力不同。我们发现界面刚度与组成活性粒子轨迹的固有持久长度成线性比例,这与模拟数据一致。我们证明,在波长比持久长度大得多的情况下,界面遵循使表面积最小化的玻尔兹曼统计,我们推导的非平衡界面刚度起到与平衡系统相同的作用。