Suppr超能文献

动态复杂网络中的最大熵

Maximum entropy in dynamic complex networks.

作者信息

Abadi Noam, Ruzzenenti Franco

机构信息

Integrated Research on Energy, Environment and Society, Faculty of Science and Engineering, <a href="https://ror.org/012p63287">University of Groningen</a>, Groningen, Netherlands.

出版信息

Phys Rev E. 2024 Nov;110(5-1):054308. doi: 10.1103/PhysRevE.110.054308.

Abstract

The field of complex networks studies a wide variety of interacting systems by representing them as networks. To understand their properties and mutual relations, the randomization of network connections is a commonly used tool. However, information-theoretic randomization methods with well-established foundations mostly provide a stationary description of these systems, while stochastic randomization methods that account for their dynamic nature lack such general foundations and require extensive repetition of the stochastic process to measure statistical properties. In this work, we extend the applicability of information-theoretic methods beyond stationary network models. By using the information-theoretic principle of maximum caliber we construct dynamic network ensemble distributions based on constraints representing statistical properties with known values throughout the evolution. We focus on the particular cases of dynamics constrained by the average number of connections of the whole network and each node, comparing each evolution to simulations of stochastic randomization that obey the same constraints. We find that ensemble distributions estimated from simulations match those calculated with maximum caliber and that the equilibrium distributions to which they converge agree with known results of maximum entropy given the same constraints. Finally, we discuss further the connections to other maximum entropy approaches to network dynamics and conclude by proposing some possible avenues of future research.

摘要

复杂网络领域通过将各种相互作用的系统表示为网络来对其进行研究。为了理解它们的性质和相互关系,网络连接的随机化是一种常用工具。然而,具有完善基础的信息论随机化方法大多提供了这些系统的静态描述,而考虑其动态性质的随机随机化方法缺乏这样的一般基础,并且需要对随机过程进行大量重复以测量统计性质。在这项工作中,我们将信息论方法的适用性扩展到静态网络模型之外。通过使用最大口径的信息论原理,我们基于表示整个演化过程中具有已知值的统计性质的约束条件构建动态网络系综分布。我们专注于由整个网络和每个节点的平均连接数约束的动力学的特定情况,将每次演化与遵循相同约束的随机随机化模拟进行比较。我们发现从模拟估计的系综分布与用最大口径计算的分布相匹配,并且它们收敛到的平衡分布与在相同约束下最大熵的已知结果一致。最后,我们进一步讨论与网络动力学的其他最大熵方法的联系,并通过提出一些未来研究的可能途径来得出结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验