Suppr超能文献

具有振荡动力学的随机反应网络非平衡稳态分布的最大熵预测

Maximum Entropy Prediction of Non-Equilibrium Stationary Distributions for Stochastic Reaction Networks with Oscillatory Dynamics.

作者信息

Constantino Pedro H, Kaznessis Yiannis N

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.

出版信息

Chem Eng Sci. 2017 Nov 2;171:139-148. doi: 10.1016/j.ces.2017.05.029. Epub 2017 May 22.

Abstract

Many chemical reaction networks in biological systems present complex oscillatory dynamics. In systems such as regulatory gene networks, cell cycle, and enzymatic processes, the number of molecules involved is often far from the thermodynamic limit. Although stochastic models based on the probabilistic approach of the Chemical Master Equation (CME) have been proposed, studies in the literature have been limited by the challenges of solving the CME and the lack of computational power to perform large-scale stochastic simulations. In this paper, we show that the infinite set of stationary moment equations describing the stochastic Brusselator and Schnakenberg oscillatory reactions networks can be truncated and solved using maximization of the entropy of the distributions. The results from our numerical experiments compare with the distributions obtained from well-established kinetic Monte Carlo methods and suggest that the accuracy of the prediction increases exponentially with the closure order chosen for the system. We conclude that maximum entropy models can be used as an efficient closure scheme alternative for moment equations to predict the non-equilibrium stationary distributions of stochastic chemical reactions with oscillatory dynamics. This prediction is accomplished without any prior knowledge of the system dynamics and without imposing any biased assumptions on the mathematical relations among species involved.

摘要

生物系统中的许多化学反应网络呈现出复杂的振荡动力学。在诸如调控基因网络、细胞周期和酶促过程等系统中,所涉及的分子数量往往远未达到热力学极限。尽管已经提出了基于化学主方程(CME)概率方法的随机模型,但文献中的研究受到求解CME的挑战以及缺乏进行大规模随机模拟的计算能力的限制。在本文中,我们表明,描述随机布鲁塞尔振子和施纳肯贝格振荡反应网络的无穷多个稳态矩方程可以通过分布熵最大化进行截断和求解。我们数值实验的结果与通过成熟的动力学蒙特卡罗方法获得的分布进行了比较,结果表明预测的准确性随着为系统选择的闭合阶数呈指数增长。我们得出结论,最大熵模型可以用作矩方程的一种有效闭合方案替代方法,以预测具有振荡动力学的随机化学反应的非平衡稳态分布。这种预测无需对系统动力学有任何先验知识,也无需对所涉及物种之间的数学关系施加任何有偏假设即可完成。

相似文献

3
A closure scheme for chemical master equations.化学主方程的闭系方案。
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5. doi: 10.1073/pnas.1306481110. Epub 2013 Aug 12.
5
Stochastic analysis of complex reaction networks using binomial moment equations.使用二项式矩方程对复杂反应网络进行随机分析。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031126. doi: 10.1103/PhysRevE.86.031126. Epub 2012 Sep 20.

本文引用的文献

2
A closure scheme for chemical master equations.化学主方程的闭系方案。
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5. doi: 10.1073/pnas.1306481110. Epub 2013 Aug 12.
9
Three faces of the second law. I. Master equation formulation.热力学第二定律的三个方面。一、主方程表述。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011143. doi: 10.1103/PhysRevE.82.011143. Epub 2010 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验