Tang Qingming, Fan Youzhun, Sun Jiwei, Fan Wenjie, Zhao Baoying, Yin Zhaoyi, Cao Yaru, Han Yunyun, Su Bin, Yang Cheng, Yu Peng, Ning Chengyun, Chen Lili
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Small. 2025 Jan;21(3):e2406090. doi: 10.1002/smll.202406090. Epub 2024 Dec 18.
Immunomodulation is essential for implants to regulate tissue regeneration, while bioelectricity plays a fundamental role in regulating immune activities. Under natural preferences, the bone matrix electrical microenvironment is heterogeneous in the nanoscale, which provides fundamental electrical cues to regulate bone immunity and regenerative repair. However, remodeling bone nanoscale heterogeneous electrical microenvironment remains a challenge, and the underlying immune modulation mechanism remains to be explored. In this research, in situ discretely distributed nano-heterojunctions are constructed on titanium oxide nanofibers to mimic the heterogeneous electrical microenvironment exhibited by bone collagen fibers. The material is identified to directly regulate calcium ion channeling for anti-inflammatory polarization of macrophages. Surprisingly, the highly biomimetic heterogeneous electrical microenvironment can induce a pro-angiogenic phenotypic transformation of macrophages, leading to enhanced neo-vascularization at the early stage of osteogenesis. Mechanistic exploration identifies that PI3K signaling pathway-mediated FGF2 secretion may partially explain for strengthened coupling of immunomodulation and angiogenesis, which optimizes subsequent bone regeneration. These findings highlight the significance of biomimetic heterogeneous electrical cues on immune-modulation and provide a design principle for future electroactive implant materials.
免疫调节对于植入物调节组织再生至关重要,而生物电在调节免疫活动中发挥着重要作用。在自然状态下,骨基质电微环境在纳米尺度上是异质的,这为调节骨免疫和再生修复提供了基本的电信号。然而,重塑骨纳米尺度的异质电微环境仍然是一个挑战,其潜在的免疫调节机制仍有待探索。在本研究中,在二氧化钛纳米纤维上原位构建离散分布的纳米异质结,以模拟骨胶原纤维呈现的异质电微环境。该材料被确定可直接调节钙离子通道,促进巨噬细胞的抗炎极化。令人惊讶的是,高度仿生的异质电微环境可诱导巨噬细胞发生促血管生成的表型转变,从而在成骨早期增强新生血管形成。机制探索表明,PI3K信号通路介导的FGF2分泌可能部分解释了免疫调节与血管生成之间增强的耦合作用,这优化了随后的骨再生。这些发现突出了仿生异质电信号在免疫调节中的重要性,并为未来的电活性植入材料提供了设计原则。