Zeng Jie, Liu Zhixin, Wang Deng, Wu Jiawen, Zhu Peide, Bao Yuqi, Guo Xiaoyu, Qu Geping, Hu Bihua, Wang Xingzhu, Zhang Yong, Yan Lei, Jen Alex K-Y, Xu Baomin
Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China.
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong.
J Am Chem Soc. 2025 Jan 8;147(1):725-733. doi: 10.1021/jacs.4c13356. Epub 2024 Dec 18.
Chemically modifiable small-molecule hole transport materials (HTMs) hold promise for achieving efficient and scalable perovskite solar cells (PSCs). Compared to emerging self-assembled monolayers, small-molecule HTMs are more reliable in terms of large-area deposition and long-term operational stability. However, current small-molecule HTMs in inverted PSCs lack efficient molecular designs that balance both the charge transport capability and interface compatibility, resulting in a long-standing stagnation of power conversion efficiency (PCE) below 24.5%. Here, we report the comprehensive design of HTMs' backbone and functional groups, which optimizes a simple planar linear molecular backbone with a high mobility exceeding 7.1 × 10 cm V S and enhances its interface anchoring capability. Owing to the improved surface properties and anchoring effects, the tailored HTMs enhance the interface contact at the HTM/perovskite heterojunction, minimizing nonradiative recombination and transport loss and leading to a high fill factor of 86.1%. Our work has overcome the persistent efficiency bottleneck for small-molecule HTMs, particularly for large-area devices. Consequently, the resultant PSCs exhibit PCEs of 26.1% (25.7% certified) for a 0.068 cm device and 24.7% (24.4% certified) for a 1.008 cm device, representing the highest PCE for small-molecule HTMs in inverted PSCs.
可化学改性的小分子空穴传输材料(HTMs)有望实现高效且可扩展的钙钛矿太阳能电池(PSCs)。与新兴的自组装单分子层相比,小分子HTMs在大面积沉积和长期运行稳定性方面更可靠。然而,目前倒置PSC中的小分子HTMs缺乏能平衡电荷传输能力和界面兼容性的有效分子设计,导致功率转换效率(PCE)长期停滞在24.5%以下。在此,我们报告了HTMs主链和官能团的综合设计,该设计优化了一种简单的平面线性分子主链,其迁移率超过7.1×10 cm V S,同时增强了其界面锚定能力。由于表面性质和锚定效应的改善,定制的HTMs增强了HTM/钙钛矿异质结处的界面接触,最大限度地减少了非辐射复合和传输损失,并导致高达86.1%的填充因子。我们的工作克服了小分子HTMs长期存在的效率瓶颈,特别是对于大面积器件。因此,所得的PSC在0.068 cm²器件上的PCE为26.1%(认证值为25.7%),在1.008 cm²器件上的PCE为24.7%(认证值为24.4%),代表了倒置PSC中小分子HTMs的最高PCE。