Suppr超能文献

可锚定聚合物助力高效倒置钙钛矿太阳能电池制备超薄且坚固的空穴传输层

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

作者信息

Zhan Liqing, Zhang Shuo, Li Zhihao, Li Wenzhuo, Zhang Huidong, He Jingwen, Ji Xiaoyu, Liu Shuaijun, Yu Furong, Wang Songran, Ning Zhijun, Li Zhen, Stolterfoht Martin, Han Liyuan, Zhu Wei-Hong, Xu Yisheng, Wu Yongzhen

机构信息

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202422571. doi: 10.1002/anie.202422571. Epub 2025 Jan 9.

Abstract

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5). Specifically, coordinative pyridyl groups are introduced as side-chains on poly-triarylamine (PTAA) backbone with varied contents by copolymerization method, resulting in chemical interactions between polymeric HTMs and substrates. The strong interaction allows them to be processed into ultra-thin, uniform, and robust hole-transporting layers through employing low-concentration solutions (0.1 mg mL, vs. 2.0-5.0 mg mL for conventional PTAA), greatly decreasing charge transport losses. Moreover, upon systematically tuning the pyridyl substitution ratio, the energy levels, surface wetting, solution processability, and defect passivation capability of such anchorable HTMs are simultaneously optimized. Based on the optimal CP4, we achieved highly efficient inverted PSCs with power conversion efficiencies (PCEs) up to 26.21 %, which is on par with state-of-the-art SAM-based inverted PSCs. Furthermore, these devices exhibit enhanced stabilities under repeated current-voltage scans and reverse bias ageing compared with SAM-based devices.

摘要

目前,在倒置钙钛矿太阳能电池(PSC)中,聚合物空穴传输材料(HTM)的发展落后于小分子HTM。一个关键挑战是,传统的聚合物HTM无法像自组装单分子层(SAM)那样形成超薄且保形的涂层,特别是对于具有粗糙表面形态的基板。在此,我们通过设计可锚定的聚合物HTM(CP1至CP5)来应对这一挑战。具体而言,通过共聚方法将配位吡啶基作为侧链引入到具有不同含量的聚三芳基胺(PTAA)主链上,从而在聚合物HTM与基板之间产生化学相互作用。这种强相互作用使得它们能够通过使用低浓度溶液(0.1 mg mL,而传统PTAA为2.0 - 5.0 mg mL)加工成超薄、均匀且坚固的空穴传输层,大大降低了电荷传输损失。此外,通过系统地调整吡啶基取代率,此类可锚定HTM的能级、表面润湿性、溶液可加工性和缺陷钝化能力同时得到优化。基于最优的CP4,我们实现了功率转换效率(PCE)高达26.21 %的高效倒置PSC,这与基于SAM的最先进倒置PSC相当。此外,与基于SAM的器件相比,这些器件在重复电流 - 电压扫描和反向偏置老化下表现出更高的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验