Suppr超能文献

用于增强电化学氨合成的界面工程制备纳米多孔铁钼双金属氮化物

Interfacial Engineering to Fabricate Nanoporous FeMo Bimetallic Nitride for Enhanced Electrochemical Ammonia Synthesis.

作者信息

Fang Bin, Zhao Liyuan, Li Yanqin, Yin Nianliang, Wang Xin, Jin Jutao, Wang Wenlong

机构信息

School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China.

School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(7):e2410805. doi: 10.1002/advs.202410805. Epub 2024 Dec 18.

Abstract

The electrochemical N reduction reaction (NRR) currently represents a green and sustainable approach to ammonia production. However, the further progress of NRR is significantly hampered by poor catalytic activity and selectivity, necessitating the development of efficient and stable electrocatalysts. Herein, a nanoporous Fe-Mo bimetallic nitride (FeN-MoN) is synthesized using a molten-salt preparation method. This catalyst demonstrates notable NRR performance, achieving a high NH yield rate of 45.1 µg h mg and a Faradaic efficiency (FE) of 26.5% at -0.2 V (vs RHE) under ambient conditions. Detailed experimental studies and density functional theory (DFT) calculations reveal that the fabricated interface between FeN and MoN effectively modulates the surface electronic structure of the catalyst. The interface induces an increase in the degree of electron deficiency at the nitrogen-vacancy sites on the catalyst surface, allowing N molecules to occupy the nitrogen vacancies more easily, thereby promoting N adsorption/activation during the NRR process. Consequently, the FeN-MoN catalyst exhibits outstanding NRR activity. The insights gained from fabricating the FeN-MoN interface in this work pave the way for further development of interfacial engineering to prepare high-efficient electrocatalyst.

摘要

电化学氮还原反应(NRR)目前是一种绿色且可持续的制氨方法。然而,催化活性和选择性不佳严重阻碍了NRR的进一步发展,因此需要开发高效且稳定的电催化剂。在此,采用熔盐制备法合成了一种纳米多孔铁 - 钼双金属氮化物(FeN - MoN)。该催化剂展现出显著的NRR性能,在环境条件下于 - 0.2 V(相对于可逆氢电极)时实现了45.1 μg h mg的高NH产率以及26.5%的法拉第效率(FE)。详细的实验研究和密度泛函理论(DFT)计算表明,FeN与MoN之间形成的界面有效地调节了催化剂的表面电子结构。该界面导致催化剂表面氮空位处电子缺乏程度增加,使N分子更容易占据氮空位,从而在NRR过程中促进N的吸附/活化。因此,FeN - MoN催化剂表现出出色的NRR活性。这项工作中通过构建FeN - MoN界面所获得的见解为进一步发展界面工程以制备高效电催化剂铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/11831536/8a1519a53d77/ADVS-12-2410805-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验