Suppr超能文献

基于深度学习的细胞骨架分割,用于精确高通量测量细胞骨架密度。

Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density.

作者信息

Horiuchi Ryota, Kamimura Asuka, Hanaki Yuga, Matsumoto Hikari, Ueda Minako, Higaki Takumi

机构信息

Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.

Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aoba-Ku, Sendai, 980-8578, Japan.

出版信息

Protoplasma. 2025 May;262(3):739-751. doi: 10.1007/s00709-024-02019-9. Epub 2024 Dec 18.

Abstract

Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding. In this study, we examined the utility of a deep learning-based segmentation method for accurate quantitative evaluation of cytoskeleton organization using confocal microscopic images of the cortical microtubules in tobacco BY-2 cells. The results showed that, although conventional methods sufficed for measurement of cytoskeleton angles and parallelness, the deep learning-based method significantly improved the accuracy of density measurements. To assess the versatility of the method, we extended our analysis to physiologically significant models in the context of changes in cytoskeleton density, namely Arabidopsis thaliana guard cells and zygotes. The deep learning-based method successfully improved the accuracy of cytoskeleton density measurements for quantitative evaluations of physiological changes in both stomatal movement in guard cells and intracellular polarization in elongating zygotes, confirming its utility in these applications. The results demonstrate the effectiveness of deep learning-based segmentation in providing precise and high-throughput measurements of cytoskeleton density, and has the potential to automate and expedite analyses of large-scale image datasets.

摘要

细胞骨架组织的微观分析对于理解各种细胞活动至关重要,包括植物中的细胞增殖和环境响应。传统上,细胞骨架动力学的评估一直是定性的,依赖于显微镜辅助的目视检查。然而,向定量数字显微镜的转变带来了新的技术挑战,事实证明细胞骨架结构的分割特别具有挑战性。在本研究中,我们使用烟草BY-2细胞中皮层微管的共聚焦显微镜图像,检验了一种基于深度学习的分割方法在准确量化评估细胞骨架组织方面的效用。结果表明,虽然传统方法足以测量细胞骨架的角度和平行度,但基于深度学习的方法显著提高了密度测量的准确性。为了评估该方法的通用性,我们将分析扩展到细胞骨架密度变化背景下具有生理意义的模型,即拟南芥保卫细胞和受精卵。基于深度学习的方法成功提高了细胞骨架密度测量的准确性,用于定量评估保卫细胞气孔运动和伸长受精卵细胞内极化的生理变化,证实了其在这些应用中的效用。结果证明了基于深度学习的分割在提供细胞骨架密度精确和高通量测量方面的有效性,并且有可能自动化和加速对大规模图像数据集的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验