Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; International Research Organization in Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.
Curr Biol. 2023 Oct 9;33(19):4111-4123.e7. doi: 10.1016/j.cub.2023.07.062. Epub 2023 Sep 15.
Tubulin, a heterodimer of α- and β-tubulin, is a GTPase that assembles into microtubule (MT) polymers whose dynamic properties are intimately coupled to nucleotide hydrolysis. In cells, the organization and dynamics of MTs are further tuned by post-translational modifications (PTMs), which control the ability of MT-associated proteins (MAPs) and molecular motors to engage MTs. Detyrosination is a PTM of α-tubulin, wherein its C-terminal tyrosine residue is enzymatically removed by either the vasohibin (VASH) or MT-associated tyrosine carboxypeptidase (MATCAP) peptidases. How these enzymes generate specific patterns of MT detyrosination in cells is not known. Here, we use a novel antibody-based probe to visualize the formation of detyrosinated MTs in real time and employ single-molecule imaging of VASH1 bound to its regulatory partner small-vasohibin binding protein (SVBP) to understand the process of MT detyrosination in vitro and in cells. We demonstrate that the activity, but not binding, of VASH1/SVBP is much greater on mimics of guanosine triphosphate (GTP)-MTs than on guanosine diphosphate (GDP)-MTs. Given emerging data showing that tubulin subunits in GTP-MTs are in expanded conformation relative to tubulin subunits in GDP-MTs, we reasoned that the lattice conformation of MTs is a key factor that gates the activity of VASH1/SVBP. We show that Taxol, a drug known to expand the MT lattice, promotes MT detyrosination and that CAMSAP2 and CAMSAP3 are two MAPs that spatially regulate detyrosination in cells. Collectively, our work shows that VASH1/SVBP detyrosination is regulated by the conformational state of tubulin in the MT lattice and that this is spatially determined in cells by the activity of MAPs.
微管蛋白是由α-和β-微管蛋白组成的异二聚体,是一种 GTP 酶,可组装成微管 (MT) 聚合物,其动态特性与核苷酸水解密切相关。在细胞中,MT 的组织和动态进一步通过翻译后修饰 (PTM) 进行调整,该修饰控制 MT 相关蛋白 (MAP) 和分子马达与 MT 结合的能力。去酪氨酸化是 α-微管蛋白的一种 PTM,其中其 C 末端酪氨酸残基被血管抑素 (VASH) 或 MT 相关酪氨酸羧肽酶 (MATCAP) 肽酶酶促去除。这些酶如何在细胞中产生特定的 MT 去酪氨酸化模式尚不清楚。在这里,我们使用一种新的基于抗体的探针实时可视化去酪氨酸化 MT 的形成,并使用 VASH1 与其调节伴侣小血管抑素结合蛋白 (SVBP) 结合的单分子成像来理解 MT 去酪氨酸化的过程在体外和细胞中。我们证明,VASH1/SVBP 的活性,而不是结合,在模拟鸟苷三磷酸 (GTP)-MT 上比在鸟苷二磷酸 (GDP)-MT 上高得多。鉴于新兴数据表明,GTP-MT 中的微管蛋白亚基相对于 GDP-MT 中的微管蛋白亚基处于扩展构象,我们推断 MT 的晶格构象是门控 VASH1/SVBP 活性的关键因素。我们表明,紫杉醇,一种已知能扩展 MT 晶格的药物,能促进 MT 去酪氨酸化,并且 CAMSAP2 和 CAMSAP3 是两种在细胞中空间调节去酪氨酸化的 MAP。总的来说,我们的工作表明,VASH1/SVBP 的去酪氨酸化受 MT 晶格中微管蛋白构象状态的调节,而在细胞中这种调节是由 MAP 的活性决定的。