Suppr超能文献

从脑类器官共表达网络的大规模荟萃分析中学到的关于生理相关性的经验教训。

Lessons about physiological relevance learned from large-scale meta-analysis of co-expression networks in brain organoids.

作者信息

Tanaka Yoshiaki

机构信息

Maisonneuve-Rosemont Hospital Research Centre (CRHMR), Department of Medicine, University of Montreal, Montreal, Quebec, Canada.

出版信息

PLoS Biol. 2024 Dec 18;22(12):e3002965. doi: 10.1371/journal.pbio.3002965. eCollection 2024 Dec.

Abstract

Integrative analysis of publicly available scRNA-seq data facilitates deeper understanding of biological phenomena with strong statistical power and high resolution. A new study in this issue of PLOS Biology examined the fidelity of various brain organoid protocols in reference to human primary developing brain by gene co-expression relationships with million-scale collection of public scRNA-seq data sets.

摘要

对公开可用的单细胞RNA测序(scRNA-seq)数据进行综合分析,有助于凭借强大的统计能力和高分辨率更深入地理解生物学现象。本期《公共科学图书馆·生物学》(PLOS Biology)上的一项新研究,通过与数百万规模的公共scRNA-seq数据集的基因共表达关系,参照人类原发性发育中的大脑,研究了各种脑类器官方案的保真度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7c8/11654916/b4568dbee268/pbio.3002965.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验