Dale Harvey J A, Sutherland John D
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
J Am Chem Soc. 2025 Jan 8;147(1):305-317. doi: 10.1021/jacs.4c10326. Epub 2024 Dec 18.
The catalytic competency of the ribosome in extant protein biosynthesis is thought to arise primarily from two sources: an ability to precisely juxtapose the termini of two key substrates─3'-aminoacyl and -acyl-aminoacyl tRNAs─and an ability to ease direct transpeptidation by their desolvation and encapsulation. In the absence of ribosomal, or enzymatic, protection, however, these activated alkyl esters undergo efficient hydrolysis, while significant entropic barriers serve to hamper their intermolecular cross-aminolysis in bulk water. Given that the spontaneous emergence of a catalyst of comparable size and sophistication to the ribosome in a prebiotic RNA world would appear implausible, it is thus natural to ask how appreciable peptide formation could have occurred with such substrates in bulk water without the aid of advanced ribozymatic catalysis. Using a combination of fluorine-tagged aminoacyl adenylate esters, in situ monitoring by F{H} NMR spectroscopy, analytical deconvolution of kinetics, pH-rate profile analysis, and temperature-dependence studies, we here explore the mechanistic landscape of indirect amidation, via transesterification and O-to-N rearrangement, as a highly efficient, alternative manifold for transpeptidation that may have served as a prelude to ribosomal peptide synthesis. Our results suggest a potentially overlooked role for those amino acids implicated by the cyanosulfidic reaction network with hydroxyl side chains (Ser and Thr), and they also help to resolve some outstanding ambiguities in the broader literature regarding studies of similar systems (e.g., aminolyzes with Tris buffer). The evolutionary implications of this mode of peptide synthesis and the involvement of a very specific subset of amino acids are discussed.
目前认为,核糖体在现存蛋白质生物合成中的催化能力主要源于两个方面:一是能够精确地将两个关键底物(3'-氨基酰基和酰基 - 氨基酰基tRNA)的末端并列在一起,二是能够通过去溶剂化和包封作用促进直接转肽反应。然而,在没有核糖体或酶保护的情况下,这些活化的烷基酯会发生高效水解,同时显著的熵垒会阻碍它们在大量水中的分子间交叉氨解反应。鉴于在益生元RNA世界中自发出现与核糖体大小和复杂性相当的催化剂似乎不太可能,因此很自然会问,在没有先进核酶催化的情况下,在大量水中使用此类底物时,可观的肽形成是如何发生的。我们结合使用氟标记的氨基酰腺苷酸酯、通过F{H} NMR光谱进行原位监测、动力学的分析解卷积、pH-速率曲线分析以及温度依赖性研究,在此探索通过酯交换和O到N重排进行间接酰胺化的机理,这是一种高效的转肽替代途径,可能是核糖体肽合成的前奏。我们的结果表明,那些通过含羟基侧链的氰硫化物反应网络涉及的氨基酸(丝氨酸和苏氨酸)可能具有被忽视的作用,并且它们也有助于解决更广泛文献中关于类似系统研究(例如用Tris缓冲液进行氨解)的一些突出的模糊问题。本文讨论了这种肽合成模式的进化意义以及一个非常特定的氨基酸子集的参与情况。