Suppr超能文献

树的根基:核糖体的意义、进化和起源。

Root of the Tree: The Significance, Evolution, and Origins of the Ribosome.

机构信息

Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

Chem Rev. 2020 Jun 10;120(11):4848-4878. doi: 10.1021/acs.chemrev.9b00742. Epub 2020 May 6.

Abstract

The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.

摘要

核糖体是古老的分子化石,为生命起源提供了望远镜。核糖体由 RNA 和蛋白质组成,在所有生命系统中,将信使 RNA 翻译成编码蛋白质。普遍性、经济性、中心性和古老性是翻译的固有特征。翻译机制主宰着生命之树中作为同源物共享的基因集。翻译系统的谱系定义了普遍的生命之树。核糖体的功能是构建核糖体;为了完成这项任务,核糖体制造核糖体蛋白、聚合酶、酶和信号蛋白。地球上生命产生的每一种编码蛋白都通过出口隧道,即生物学的产道。在生命之树的根阶段,即在生命的最后共同祖先 (LUCA) 之前,出口隧道的进化是占主导地位且持续不断的。蛋白质折叠与出口隧道的进化共同进化。核糖体表明,蛋白质折叠是从内在无序开始的,通过一个短而原始的出口隧道得到支持。折叠进展到热力学稳定的 β-结构,然后到动力学捕获的 α-结构。后者是由一个长而成熟的出口隧道实现的,该出口隧道部分抵消了所有多肽形成 β-折叠的一般热力学趋势。RNA 从一开始就为蛋白质折叠的进化提供了指导。核糖体的普遍共有核心,质量接近 200 万道尔顿,是由 LUCA 完成的。LUCA 之后,核糖体进入静止状态,并保持这种状态数十亿年。细菌核糖体从未离开过静止状态。古菌核糖体一直处于静止状态,除了超门 Asgard,它在 LUCA 之后积累了 rRNA。在过去的十亿年里,一些谱系的真核核糖体似乎对数积累 rRNA。Asgard 和真核生物的核糖体扩张是增量和迭代的,没有对现有基础结构进行实质性改造。核糖体保存了其历史信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验