Rodnina Marina V, Beringer Malte, Wintermeyer Wolfgang
Institute of Physical Biochemistry, University of Witten/Herdecke, Witten, Germany.
Q Rev Biophys. 2006 Aug;39(3):203-25. doi: 10.1017/S003358350600429X. Epub 2006 Aug 8.
Peptide bond formation is the fundamental reaction of ribosomal protein synthesis. The ribosome's active site--the peptidyl transferase center--is composed of rRNA, and thus the ribosome is the largest known RNA catalyst. The ribosome accelerates peptide bond formation by 10(7)-fold relative to the uncatalyzed reaction. Recent progress of structural, biochemical and computational approaches has provided a fairly detailed picture of the catalytic mechanisms employed by the ribosome. Energetically, catalysis is entirely entropic, indicating an important role of solvent reorganization, substrate positioning, and/or orientation of the reacting groups within the active site. The ribosome provides a pre-organized network of electrostatic interactions that stabilize the transition state and facilitate proton shuttling involving ribose hydroxyl groups of tRNA. The catalytic mechanism employed by the ribosome suggests how ancient RNA-world enzymes may have functioned.
肽键形成是核糖体蛋白质合成的基本反应。核糖体的活性位点——肽基转移酶中心——由rRNA组成,因此核糖体是已知最大的RNA催化剂。相对于无催化反应,核糖体将肽键形成的速度提高了10^7倍。结构、生化和计算方法的最新进展已经提供了关于核糖体所采用催化机制的相当详细的图景。在能量方面,催化完全是熵驱动的,这表明溶剂重组、底物定位和/或活性位点内反应基团的取向起着重要作用。核糖体提供了一个预先组织好的静电相互作用网络,该网络稳定过渡态并促进涉及tRNA核糖羟基的质子穿梭。核糖体所采用的催化机制揭示了古代RNA世界中的酶可能是如何发挥作用的。