Shen Jiangrong, Wang Kejun, Gao Wei, Liu Jian K, Xu Qi, Pan Gang, Chen Xiaodong, Tang Huajin
School of Computer Science and Technology, Xi'an Jiaotong University, China; State Key Lab of Brain-Machine Intelligence, Zhejiang University, China; College of Computer Science and Technology, Zhejiang University, China.
State Key Lab of Brain-Machine Intelligence, Zhejiang University, China; College of Computer Science and Technology, Zhejiang University, China.
Neural Netw. 2025 Apr;184:106975. doi: 10.1016/j.neunet.2024.106975. Epub 2024 Dec 5.
The spike-based neuronal responses within the ventral intraparietal area (VIP) exhibit intricate spatial and temporal dynamics in the posterior parietal cortex, presenting decoding challenges such as limited data availability at the biological population level. The practical difficulty in collecting VIP neuronal response data hinders the application of sophisticated decoding models. To address this challenge, we propose a unified spike-based decoding framework leveraging spiking neural networks (SNNs) for both generative and decoding purposes, for their energy efficiency and suitability for neural decoding tasks. We propose the Temporal Spiking Generative Adversarial Networks (T-SGAN), a model based on a spiking transformer, to generate synthetic time-series data reflecting the neuronal response of VIP neurons. T-SGAN incorporates temporal segmentation to reduce the temporal dimension length, while spatial self-attention facilitates the extraction of associated information among VIP neurons. This is followed by recurrent SNNs decoder equipped with an attention mechanism, designed to capture the intricate spatial and temporal dynamics for heading direction decoding. Experimental evaluations conducted on biological datasets from monkeys showcase the effectiveness of the proposed framework. Results indicate that T-SGAN successfully generates realistic synthetic data, leading to a significant improvement of up to 1.75% in decoding accuracy for recurrent SNNs. Furthermore, the SNN-based decoding framework capitalizes on the low power consumption advantages, offering substantial benefits for neuronal response decoding applications.
腹侧顶内区(VIP)内基于尖峰的神经元反应在顶叶后皮质呈现出复杂的时空动态,在生物群体水平上带来了诸如数据可用性有限等解码挑战。收集VIP神经元反应数据的实际困难阻碍了复杂解码模型的应用。为应对这一挑战,我们提出了一个统一的基于尖峰的解码框架,利用脉冲神经网络(SNN)进行生成和解码,因其能量效率和对神经解码任务的适用性。我们提出了时间脉冲生成对抗网络(T-SGAN),这是一种基于脉冲变压器的模型,用于生成反映VIP神经元神经元反应的合成时间序列数据。T-SGAN结合了时间分割以减少时间维度长度,而空间自注意力有助于提取VIP神经元之间的相关信息。接下来是配备注意力机制的循环SNN解码器,旨在捕捉用于航向方向解码的复杂时空动态。对猴子的生物数据集进行的实验评估展示了所提出框架的有效性。结果表明,T-SGAN成功生成了逼真的合成数据,使循环SNN的解码准确率显著提高了1.75%。此外,基于SNN的解码框架利用了低功耗优势,为神经元反应解码应用带来了巨大好处。