Suppr超能文献

评估野火烟雾细颗粒物的化学传输模型和机器学习模型:对健康影响评估的启示

Evaluating Chemical Transport and Machine Learning Models for Wildfire Smoke PM: Implications for Assessment of Health Impacts.

作者信息

Qiu Minghao, Kelp Makoto, Heft-Neal Sam, Jin Xiaomeng, Gould Carlos F, Tong Daniel Q, Burke Marshall

机构信息

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States.

Program in Public Health, Stony Brook University, Stony Brook, New York 11794, United States.

出版信息

Environ Sci Technol. 2024 Dec 31;58(52):22880-22893. doi: 10.1021/acs.est.4c05922. Epub 2024 Dec 18.

Abstract

Growing wildfire smoke represents a substantial threat to air quality and human health. However, the impact of wildfire smoke on human health remains imprecisely understood due to uncertainties in both the measurement of exposure of population to wildfire smoke and dose-response functions linking exposure to health. Here, we compare daily wildfire smoke-related surface fine particulate matter (PM) concentrations estimated using three approaches, including two chemical transport models (CTMs): GEOS-Chem and the Community Multiscale Air Quality (CMAQ) and one machine learning (ML) model over the contiguous US in 2020, a historically active fire year. In the western US, compared against surface PM measurements from the US Environmental Protection Agency (EPA) and PurpleAir sensors, we find that CTMs overestimate PM concentrations during extreme smoke episodes by up to 3-5 fold, while ML estimates are largely consistent with surface measurements. However, in the eastern US, where smoke levels were much lower in 2020, CTMs show modestly better agreement with surface measurements. We develop a calibration framework that integrates CTM- and ML-based approaches to yield estimates of smoke PM concentrations that outperform individual approach. When combining the estimated smoke PM concentrations with county-level mortality rates, we find consistent effects of low-level smoke on mortality but large discrepancies in effects of high-level smoke exposure across different methods. Our research highlights the differences across estimation methods for understanding the health impacts of wildfire smoke and demonstrates the importance of bench-marking estimates with available surface measurements.

摘要

日益增加的野火烟雾对空气质量和人类健康构成了重大威胁。然而,由于人群接触野火烟雾的暴露量测量以及将暴露与健康联系起来的剂量反应函数都存在不确定性,野火烟雾对人类健康的影响仍未得到精确理解。在此,我们比较了2020年美国本土(一个火灾历史活跃年份)使用三种方法估算的与野火烟雾相关的每日地表细颗粒物(PM)浓度,这三种方法包括两种化学传输模型(CTM):GEOS-Chem和社区多尺度空气质量模型(CMAQ)以及一种机器学习(ML)模型。在美国西部,与美国环境保护局(EPA)和PurpleAir传感器的地表PM测量值相比,我们发现CTM在极端烟雾事件期间高估了PM浓度达3至5倍,而ML估算值与地表测量值基本一致。然而,在2020年烟雾水平低得多的美国东部,CTM与地表测量值的一致性略好。我们开发了一个校准框架,将基于CTM和ML的方法结合起来,以得出优于单一方法的烟雾PM浓度估算值。当将估算的烟雾PM浓度与县级死亡率相结合时,我们发现低水平烟雾对死亡率有一致的影响,但不同方法对高水平烟雾暴露影响的差异很大。我们的研究突出了不同估算方法在理解野火烟雾对健康影响方面的差异,并证明了用可用的地表测量值对估算值进行基准测试的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验