School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA.
Pacific Wildland Fire Sciences Laboratory, U.S. Forest Service, Seattle, WA 98103, USA.
Int J Environ Res Public Health. 2019 Jun 17;16(12):2137. doi: 10.3390/ijerph16122137.
Large wildfires are an increasing threat to the western U.S. In the 2017 fire season, extensive wildfires occurred across the Pacific Northwest (PNW). To evaluate public health impacts of wildfire smoke, we integrated numerical simulations and observations for regional fire events during August-September of 2017. A one-way coupled Weather Research and Forecasting and Community Multiscale Air Quality modeling system was used to simulate fire smoke transport and dispersion. To reduce modeling bias in fine particulate matter (PM) and to optimize smoke exposure estimates, we integrated modeling results with the high-resolution Multi-Angle Implementation of Atmospheric Correction satellite aerosol optical depth and the U.S. Environmental Protection Agency AirNow ground-level monitoring PM concentrations. Three machine learning-based data fusion algorithms were applied: An ordinary multi-linear regression method, a generalized boosting method, and a random forest (RF) method. 10-Fold cross-validation found improved surface PM estimation after data integration and bias correction, especially with the RF method. Lastly, to assess transient health effects of fire smoke, we applied the optimized high-resolution PM exposure estimate in a short-term exposure-response function. Total estimated regional mortality attributable to PM exposure during the smoke episode was 183 (95% confidence interval: 0, 432), with 85% of the PM pollution and 95% of the consequent multiple-cause mortality contributed by fire emissions. This application demonstrates both the profound health impacts of fire smoke over the PNW and the need for a high-performance fire smoke forecasting and reanalysis system to reduce public health risks of smoke hazards in fire-prone regions.
大规模野火是美国西部日益严重的威胁。在 2017 年火灾季节,太平洋西北地区(PNW)发生了广泛的野火。为了评估野火烟雾对公共健康的影响,我们整合了 2017 年 8 月至 9 月期间区域火灾事件的数值模拟和观测结果。采用单向耦合天气研究与预报和社区多尺度空气质量模型系统来模拟火灾烟雾的传输和扩散。为了减少细颗粒物(PM)的建模偏差并优化烟雾暴露估计,我们将模型结果与高分辨率多角度大气校正卫星气溶胶光学深度和美国环保署的 AirNow 地面水平监测 PM 浓度进行了整合。应用了三种基于机器学习的数据融合算法:普通多元线性回归方法、广义增强方法和随机森林(RF)方法。10 折交叉验证发现,数据集成和偏差校正后,表面 PM 估计值得到了改善,尤其是采用 RF 方法时。最后,为了评估火灾烟雾的瞬态健康影响,我们在短期暴露-反应函数中应用了优化后的高分辨率 PM 暴露估计值。在烟雾事件期间,归因于 PM 暴露的总区域死亡率为 183(95%置信区间:0,432),其中 85%的 PM 污染和 95%的由此产生的多原因死亡归因于火灾排放。该应用既展示了火灾烟雾对 PNW 的深远健康影响,也展示了需要高性能的火灾烟雾预测和再分析系统来降低火灾多发地区烟雾危害的公共健康风险。