Suppr超能文献

复发性流产:危险因素与预测模型方法

Recurrent pregnancy loss: risk factors and predictive modeling approaches.

作者信息

Zhang Xiaoyu, Gao Jiawei, Yang Liuxin, Feng Xiaoling, Yuan Xingxing

机构信息

Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China.

Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.

出版信息

J Matern Fetal Neonatal Med. 2025 Dec;38(1):2440043. doi: 10.1080/14767058.2024.2440043. Epub 2024 Dec 18.

Abstract

PURPOSE

This review aims to identify and analyze the risk factors associated with recurrent pregnancy loss (RPL) and to evaluate the effectiveness of various predictive models in estimating the risk of RPL. The review also explores recent advancements in machine learning algorithms that can enhance the accuracy of these predictive models. The ultimate goal is to provide a comprehensive understanding of how these tools can aid in the personalized management of women experiencing RPL.

MATERIALS AND METHODS

The review synthesizes current literature on RPL, focusing on various risk factors such as chromosomal abnormalities, autoimmune conditions, hormonal imbalances, and structural uterine anomalies. It also analyzes different predictive models for RPL risk assessment, including genetic screening tools, risk scoring systems that integrate multiple clinical parameters, and machine learning algorithms capable of processing complex datasets. The effectiveness and limitations of these models are critically evaluated to provide insights into their clinical application.

RESULTS

Key risk factors for RPL were identified, including chromosomal abnormalities (e.g. translocations and aneuploidies), autoimmune conditions (e.g. antiphospholipid syndrome), hormonal imbalances (e.g. thyroid dysfunction and luteal phase defects), and structural uterine anomalies (e.g. septate or fibroid-affected uteri). Predictive models such as genetic screening tools and risk scoring systems were shown to be effective in estimating RPL risk. Recent advancements in machine learning algorithms demonstrate potential for enhancing predictive accuracy by analyzing complex datasets, which may lead to improved personalized management strategies.

CONCLUSIONS

The integration of risk factors and predictive modeling offers a promising approach to improving outcomes for women affected by RPL. A comprehensive understanding of these factors and models can aid clinicians and researchers in refining risk assessment and developing targeted interventions. The review underscores the need for further research into specific pathways involved in RPL and the potential of novel treatments aimed at mitigating risk.

摘要

目的

本综述旨在识别和分析与复发性流产(RPL)相关的风险因素,并评估各种预测模型在估计RPL风险方面的有效性。该综述还探讨了机器学习算法的最新进展,这些进展可以提高这些预测模型的准确性。最终目标是全面了解这些工具如何有助于对经历RPL的女性进行个性化管理。

材料和方法

该综述综合了关于RPL的当前文献,重点关注各种风险因素,如染色体异常、自身免疫性疾病、激素失衡和子宫结构异常。它还分析了用于RPL风险评估的不同预测模型,包括基因筛查工具、整合多个临床参数的风险评分系统以及能够处理复杂数据集的机器学习算法。对这些模型的有效性和局限性进行了严格评估,以深入了解它们的临床应用。

结果

确定了RPL的关键风险因素,包括染色体异常(如易位和非整倍体)、自身免疫性疾病(如抗磷脂综合征)、激素失衡(如甲状腺功能障碍和黄体期缺陷)以及子宫结构异常(如纵隔子宫或肌瘤影响的子宫)。基因筛查工具和风险评分系统等预测模型在估计RPL风险方面显示出有效性。机器学习算法的最新进展表明,通过分析复杂数据集有可能提高预测准确性,这可能会带来改进的个性化管理策略。

结论

风险因素与预测模型的整合为改善受RPL影响女性的结局提供了一种有前景的方法。对这些因素和模型的全面理解可以帮助临床医生和研究人员完善风险评估并制定针对性的干预措施。该综述强调需要进一步研究RPL涉及的特定途径以及旨在降低风险的新治疗方法的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验