Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195.
Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2217125120. doi: 10.1073/pnas.2217125120. Epub 2023 Feb 21.
Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17HO (SC8.5); NaCl·13HO (SC13)]. We found that the dissociation of Na and Cl ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the HO-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.
氯化钠有望在木卫二和木卫三之类的冰态卫星的许多表面上被发现。然而,由于已知的含 NaCl 相不能与当前需要更多水合数的观测结果相匹配,因此光谱识别仍然难以实现。在与冰态世界相关的条件下工作,我们报告了三种“超水合”氯化钠(SC)水合物的特征,并对两个晶体结构进行了细化[2NaCl·17HO(SC8.5);NaCl·13HO(SC13)]。我们发现,这些晶格内的 Na 和 Cl 离子的解离允许大量水分子的掺入,从而解释了它们的超水合。这一发现表明,在类似条件下可能会发现常见盐的多种超水合结晶相。热力学约束表明,SC8.5 在 235 K 以下的室压下稳定,它可能是木卫二、泰坦、木卫三、木卫四、土卫二或谷神星等冰态卫星表面上最丰富的 NaCl 水合物。这些超水合结构的发现是对 HO-NaCl 相图的重大更新。这些超水合结构解释了木卫二和木卫三表面的远程观测结果与之前 NaCl 固体数据之间的不匹配。它还强调了在相关条件下对超水合物进行矿物学探索和光谱数据的迫切需要,以帮助未来的太空任务对冰态世界进行探索。