Degenhardt Maximilia F S, Degenhardt Hermann F, Bhandari Yuba R, Lee Yun-Tzai, Ding Jienyu, Yu Ping, Heinz William F, Stagno Jason R, Schwieters Charles D, Watts Norman R, Wingfield Paul T, Rein Alan, Zhang Jinwei, Wang Yun-Xing
Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
Nature. 2025 Jan;637(8048):1234-1243. doi: 10.1038/s41586-024-07559-x. Epub 2024 Dec 18.
Much of the human genome is transcribed into RNAs, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded-are conformationally heterogeneous and flexible, which is a prerequisite for function, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold for protein structure prediction do not apply to RNA. Therefore, determining the structures of heterogeneous RNAs remains an unmet challenge. Here we report holistic RNA structure determination method using atomic force microscopy, unsupervised machine learning and deep neural networks (HORNET), a novel method for determining three-dimensional topological structures of RNA using atomic force microscopy images of individual molecules in solution. Owing to the high signal-to-noise ratio of atomic force microscopy, this method is ideal for capturing structures of large RNA molecules in distinct conformations. In addition to six benchmark cases, we demonstrate the utility of HORNET by determining multiple heterogeneous structures of RNase P RNA and the HIV-1 Rev response element (RRE) RNA. Thus, our method addresses one of the major challenges in determining heterogeneous structures of large and flexible RNA molecules, and contributes to the fundamental understanding of RNA structural biology.
人类基因组的大部分都被转录成RNA,其中许多RNA含有对其功能很重要的结构元件。这类RNA分子——包括那些具有特定结构且折叠良好的分子——在构象上是异质且灵活的,这是其发挥功能的先决条件,但这限制了核磁共振、晶体学和冷冻电子显微镜等方法在结构解析方面的适用性。此外,由于缺乏大型RNA结构数据库,且序列与结构之间没有明确的相关性,像AlphaFold这样用于蛋白质结构预测的方法并不适用于RNA。因此,确定异质RNA的结构仍然是一个尚未解决的挑战。在此,我们报告了一种使用原子力显微镜、无监督机器学习和深度神经网络的整体RNA结构测定方法(HORNET),这是一种利用溶液中单个分子的原子力显微镜图像来确定RNA三维拓扑结构的新方法。由于原子力显微镜的高信噪比,该方法非常适合捕捉处于不同构象的大型RNA分子的结构。除了六个基准案例外,我们通过确定核糖核酸酶P RNA和HIV-1 Rev反应元件(RRE)RNA的多个异质结构,证明了HORNET的实用性。因此,我们的方法解决了确定大型柔性RNA分子异质结构的主要挑战之一,并有助于对RNA结构生物学的基础理解。