Falach Rotem, Geva-Sagiv Maya, Eliashiv Dawn, Goldstein Lilach, Budin Ofer, Gurevitch Guy, Morris Genela, Strauss Ido, Globerson Amir, Fahoum Firas, Fried Itzhak, Nir Yuval
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Sci Data. 2024 Dec 18;11(1):1354. doi: 10.1038/s41597-024-04187-y.
Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially during non-rapid eye movement (NREM) sleep and are associated with impaired memory and cognition. Despite growing interest, most studies involving IED detections rely on visual annotations or employ simple amplitude threshold approaches. Alternatively, advanced computerized detection methods are not standardized or publicly available. To address this gap, we introduce a novel dataset comprising multichannel intracranial electroencephalography (iEEG) data recorded at two medical centers during overnight sleep with IED annotations performed by expert neurologists. Utilizing these annotations to train machine learning models via a gradient-boosting algorithm, we demonstrate automated IED detection with high precision (94.4%) and sensitivity (94.3%) that can generalize across individuals and surpass performance of a leading commercial software. The dataset featuring multi-channel annotations with sub-second resolution including hippocampus and medial temporal lobe (MTL) regions is made publicly available, together with the detection algorithm, to advance research on detection methodology, epilepsy, sleep, and cognition.
发作间期癫痫样放电(IEDs),如棘波和尖波,代表癫痫患者在发作间期出现的病理性电生理活动。IEDs优先出现在非快速眼动(NREM)睡眠期间,并与记忆和认知受损有关。尽管对此兴趣日益浓厚,但大多数涉及IED检测的研究依赖于视觉标注或采用简单的幅度阈值方法。此外,先进的计算机化检测方法尚未标准化或公开可用。为了填补这一空白,我们引入了一个新颖的数据集,该数据集包含在两个医疗中心夜间睡眠期间记录的多通道颅内脑电图(iEEG)数据,并由神经科专家进行了IED标注。利用这些标注通过梯度提升算法训练机器学习模型,我们展示了高精度(94.4%)和高灵敏度(94.3%)的自动IED检测,该检测可以推广到个体,并超越领先商业软件的性能。该数据集具有多通道标注,分辨率达到亚秒级,包括海马体和内侧颞叶(MTL)区域,连同检测算法一起公开提供,以推动关于检测方法、癫痫、睡眠和认知的研究。