Portas Aurélie, Carriot Nathan, Barry-Martinet Raphaëlle, Ortalo-Magné Annick, Hajjoul Houssam, Dormoy Bruno, Culioli Gérald, Quillien Nolwenn, Briand Jean-François
France Energies Marines, Plouzané, France.
Laboratoire MAPIEM, Université de Toulon, Toulon, France.
Environ Microbiome. 2024 Dec 18;19(1):109. doi: 10.1186/s40793-024-00647-5.
While waves, swells and currents are important drivers of the ocean, their specific influence on the biocolonization of marine surfaces has been little studied. The aim of this study was to determine how hydrodynamics influence the dynamics of microbial communities, metabolic production, macrofoulers and the associated vagile fauna. Using a field device simulating a shear stress gradient, a multi-scale characterization of attached communities (metabarcoding, LC-MS, biochemical tests, microscopy) was carried out for one month each season in Toulon Bay (northwestern Mediterranean). Shear stress appeared to be the primary factor influencing biomass, EPS production and community structure and composition. Especially, the transition from static to dynamic conditions, characterized by varying shear stress intensities, had a more pronounced effect on prokaryotic and eukaryotic beta-diversity than changes in shear stress intensity or seasonal physico-chemical parameters. In static samples, mobile microbe feeders such as arthropods and nematodes were predominant, whereas shear stress favored the colonization of sessile organisms and heterotrophic protists using the protective structure of biofilms for growth. The increase in shear stress resulted in a decrease in biomass but an overproduction of EPS, specifically exopolysaccharides, suggesting an adaptive response to withstand shear forces. Metabolite analysis highlighted the influence of shear stress on community dynamics. Specific metabolites associated with static conditions correlated positively with certain bacterial and algal groups, indirectly indicating reduced grazer control with increasing shear stress.
虽然海浪、涌浪和海流是海洋的重要驱动力,但它们对海洋表面生物定殖的具体影响鲜有研究。本研究的目的是确定流体动力学如何影响微生物群落动态、代谢产物生成、大型污损生物以及相关的可移动动物群。使用模拟剪切应力梯度的现场装置,在土伦湾(地中海西北部)每个季节对附着群落进行为期一个月的多尺度表征(代谢条形码分析、液相色谱 - 质谱联用、生化测试、显微镜观察)。剪切应力似乎是影响生物量、胞外聚合物生成以及群落结构和组成的主要因素。特别是,从静态条件到动态条件的转变,其特征在于剪切应力强度的变化,对原核生物和真核生物的β多样性的影响比剪切应力强度或季节性理化参数的变化更为显著。在静态样本中,诸如节肢动物和线虫等可移动的微生物捕食者占主导地位,而剪切应力有利于固着生物和利用生物膜保护结构生长的异养原生生物的定殖。剪切应力的增加导致生物量减少,但胞外聚合物,特别是胞外多糖过量生成,这表明存在一种抵御剪切力的适应性反应。代谢物分析突出了剪切应力对群落动态的影响。与静态条件相关的特定代谢物与某些细菌和藻类群体呈正相关,间接表明随着剪切应力增加,捕食者控制作用减弱。