Suppr超能文献

利用高光谱影像预测和绘制新疆杨叶片含水量

Prediction and mapping of leaf water content in Populus alba var. pyramidalis using hyperspectral imagery.

作者信息

Li Zhao-Kui, Li Hong-Li, Gong Xue-Wei, Wang Heng-Fang, Hao Guang-You

机构信息

School of Computer Science, Shenyang Aerospace University, Shenyang, 110136, China.

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.

出版信息

Plant Methods. 2024 Dec 18;20(1):184. doi: 10.1186/s13007-024-01312-1.

Abstract

Leaf water content (LWC) encapsulates critical aspects of tree physiology and is considered a proxy for assessing tree drought stress and the risk of forest decline; however, its measurement relies on destructive sampling and is thus less efficient. Advancements in hyperspectral imaging technology present new prospects for noninvasively evaluating LWC and mapping drought severity across forested regions. In this study, leaf samples were obtained from Populus alba var. pyramidalis, a species widely employed for constructing farmland shelterbelts in water-limited regions of northern China but notably susceptible to drought. These samples were dehydrated to varying degrees to generate concurrent LWC measurements and hyperspectral images, enabling the development of narrow-band and multivariate spectral prediction models for LWC estimation. Two visible-spectrum narrow-band indices identified, the single-band index (R) and the band subtraction index (R - R), demonstrated a strong correlation with LWC. Despite certain influences of variable preprocessing and selection on multivariate model performance, most models exhibited robust predictive accuracy for LWC. The FDRL-UVE-PLSR combination emerged as the optimal multivariate model, with R values reaching 0.9925 and 0.9853 and RMSE values below 0.0124 and 0.0264 for the calibration and validation datasets, respectively. Using this optimal model, along with localized spectral smoothing, moisture distribution across leaf surfaces was visualized, revealing lower water retention at the leaf margins compared to central regions. These methodologies provide critical insights into subtle water-associated physiological processes at the leaf scale and facilitate high-frequency, large-scale assessments and monitoring of drought stress levels and the risk of drought-induced tree mortality and forest degradation in drylands.

摘要

叶片含水量(LWC)概括了树木生理学的关键方面,被视为评估树木干旱胁迫和森林衰退风险的指标;然而,其测量依赖于破坏性采样,因此效率较低。高光谱成像技术的进步为非侵入性评估LWC和绘制森林地区干旱严重程度图带来了新的前景。在本研究中,叶片样本取自新疆杨,该树种在中国北方水资源有限地区广泛用于建造农田防护林,但特别容易受到干旱影响。这些样本被脱水至不同程度,以生成同步的LWC测量值和高光谱图像,从而能够开发用于LWC估计的窄带和多元光谱预测模型。识别出的两个可见光谱窄带指数,即单波段指数(R)和波段减法指数(R - R),与LWC显示出很强的相关性。尽管变量预处理和选择对多元模型性能有一定影响,但大多数模型对LWC表现出稳健的预测准确性。FDRL-UVE-PLSR组合成为最优的多元模型,在校准和验证数据集上,R值分别达到0.9925和0.9853,RMSE值分别低于0.0124和0.0264。使用这个最优模型,结合局部光谱平滑,可视化了叶片表面的水分分布,结果显示叶片边缘的保水能力低于中部区域。这些方法为叶片尺度上与水分相关的微妙生理过程提供了关键见解,并有助于对干旱胁迫水平以及干旱导致树木死亡和旱地森林退化风险进行高频、大规模的评估和监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc06/11656988/5e0a7038661b/13007_2024_1312_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验