Suppr超能文献

预测控制性卵巢过度刺激后卵巢反应的最佳卵巢储备标志物:一项系统评价和荟萃分析。

The best ovarian reserve marker to predict ovarian response following controlled ovarian hyperstimulation: a systematic review and meta-analysis.

作者信息

Salemi Fateme, Jambarsang Sara, Kheirkhah Amir, Salehi-Abargouei Amin, Ahmadnia Zahra, Hosseini Haniye Ali, Lotfi Marzieh, Amer Saad

机构信息

Hematology, Oncology and Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran.

Departments of Biostatistics and Epidemiology, Center for Healthcare Data Modeling, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160, Iran.

出版信息

Syst Rev. 2024 Dec 18;13(1):303. doi: 10.1186/s13643-024-02684-0.

Abstract

BACKGROUND

One of the most challenging aspects of treating patients facing primary ovarian insufficiency, especially those eligible for controlled ovarian hyperstimulation (COH), is the assessment of ovarian function and response to stimulatory protocols in terms of the number of oocytes retrieved. The lack of consistency between studies regarding the best parameter for response evaluation necessitates a comprehensive statistical analysis of the most commonly utilized ovarian reserve markers (ORM). This systematic review and meta-analysis aims to establish the optimal metric for assessing ovarian reserve among COH candidates.

METHODS

The PubMed/MEDLINE, Scopus, and ISI Web of Science databases were searched until July 2024, with no date or language limitations. The Newcastle-Ottawa scale was used to evaluate the validity of anti-Mullerian hormone (AMH), antral follicle count (AFC), follicle-stimulating hormone (FSH), and estradiol (E2) in patients receiving controlled ovarian hyperstimulation. Studies on the diagnostic accuracy of ovarian reserve markers in predicting ovarian response to controlled ovarian hyperstimulation in assisted reproduction technology (ART) candidates were reviewed. The diagnostic odds ratio (DOR) was determined using the Der Simonian-Laird random effects model meta-analysis to assess the likelihood of detecting low or high ovarian responses in COH candidates. Cochran's Q, and I-squared, were used to analyze between-study heterogeneity.

RESULTS

This systematic review and meta-analysis included 26 studies including 17 cohorts, 4 case controls, and 5 cross-sectional studies. AFC and AMH demonstrated significant diagnostic performance compared to FSH and E2 in poor and high response category. AMH slightly outperformed AMH and had the highest logarithm of DOR for detecting poor [2.68 (95% CI 1.90, 3.45)] and high ovarian response [2.76 (95% CI 1.57, 3.95)]. However, it showed a high between-study heterogeneity (I = 95.65, Q = 189.65, p < 0.05).

CONCLUSIONS

AFC and AMH were the most accurate predictors of poor and high ovarian response to controlled ovarian hyperstimulation. However, further research is needed to develop models assessing the combined impact of AMH and AFC on ovarian response prediction.

SYSTEMATIC REVIEW REGISTRATION

PROSPERO CRD42021245380.

摘要

背景

对于面临原发性卵巢功能不全的患者,尤其是那些适合控制性卵巢刺激(COH)的患者,治疗中最具挑战性的方面之一是根据获取的卵母细胞数量评估卵巢功能以及对刺激方案的反应。关于反应评估的最佳参数,不同研究之间缺乏一致性,因此有必要对最常用的卵巢储备标志物(ORM)进行全面的统计分析。本系统评价和荟萃分析旨在确定评估COH候选者卵巢储备的最佳指标。

方法

检索了截至2024年7月的PubMed/MEDLINE、Scopus和ISI Web of Science数据库,无日期或语言限制。使用纽卡斯尔-渥太华量表评估抗苗勒管激素(AMH)、窦卵泡计数(AFC)、促卵泡生成素(FSH)和雌二醇(E2)在接受控制性卵巢刺激患者中的有效性。回顾了关于卵巢储备标志物在预测辅助生殖技术(ART)候选者对控制性卵巢刺激的卵巢反应方面的诊断准确性的研究。使用Der Simonian-Laird随机效应模型荟萃分析确定诊断比值比(DOR),以评估在COH候选者中检测低或高卵巢反应的可能性。使用Cochran's Q和I²分析研究间的异质性。

结果

本系统评价和荟萃分析纳入了26项研究,包括17项队列研究、4项病例对照研究和5项横断面研究。在低反应和高反应类别中,与FSH和E2相比,AFC和AMH表现出显著的诊断性能。AMH略优于AFC,在检测低卵巢反应[2.68(95%CI 1.90,3.45)]和高卵巢反应[2.76(95%CI 1.57,3.9)]方面具有最高的DOR对数。然而,它显示出较高的研究间异质性(I = 95.65,Q = 189.65,p < 0.05)。

结论

AFC和AMH是对控制性卵巢刺激低或高卵巢反应最准确的预测指标。然而,需要进一步研究来开发评估AMH和AFC对卵巢反应预测的综合影响的模型。

系统评价注册

PROSPERO CRD42021245380。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f83/11657140/25b98d49fd86/13643_2024_2684_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验