Suppr超能文献

构巢曲霉细胞壁完整性激酶MpkA会影响改变菌丝体材料机械性能的细胞表型。

Aspergillus nidulans cell wall integrity kinase, MpkA, impacts cellular phenotypes that alter mycelial-material mechanical properties.

作者信息

Gray Kelsey, Edwards Harley, Doan Alexander G, Huso Walker, Lee JungHun, Pan Wanwei, Bolima Nelanne, Morse Meredith E, Yoda Sarah, Gautam Isha, Harris Steven D, Zupan Marc, Wang Tuo, deCarvalho Tagide, Marten Mark R

机构信息

Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.

Department of Chemistry, Michigan State University, 578 S. Shaw Ln, East Lansing, MI, 48824, USA.

出版信息

Fungal Biol Biotechnol. 2024 Dec 18;11(1):22. doi: 10.1186/s40694-024-00191-4.

Abstract

Mycelial materials are an emerging, natural material made from filamentous fungi that have the potential to replace unsustainable materials used in numerous commercial applications (e.g., packaging, textiles, construction). Efforts to change the mechanical properties of mycelial-materials have typically involved altering growth medium, processing approaches, or fungal species. Although these efforts have shown varying levels of success, all approaches have shown there is a strong correlation between phenotype (of both fungal mycelia and mycelial material's assembly) and resultant mechanical properties. We hypothesize that genetic means can be used to generate specific fungal phenotypes, leading to mycelial materials with specific mechanical properties. To begin to test this hypothesis, we used a mutant of the model filamentous fungus, Aspergillus nidulans, with a deletion in the gene encoding the last kinase in the cell wall integrity (CWI) signaling pathway, mpkA. We generated one set of mycelial materials from the ΔmpkA deletion mutant (A1404), and another from its isogenic parent (A1405; control). When subjected to tensile testing, and compared to material generated from the control, ΔmpkA material has similar elastic modulus, but significantly increased ultimate tensile strength, and strain at failure. When subjected to a fragmentation assay (i.e., resistance to shear-stress), the ΔmpkA material also had higher relative mechanical strength. To determine possible causes for this behavior, we carried out a comprehensive set of phenotype assessments focused on: three-dimensional structure, hyphal morphology, hyphal growth behaviors, and conidial development. We found, compared to the control, material generated from the ΔmpkA mutant manifests significantly less development, a modified cell wall composition, larger diameter hyphae, more total biomass, higher water capacity and more densely packed material, which all appear to impact the altered mechanical properties.

摘要

菌丝体材料是一种新兴的天然材料,由丝状真菌制成,有潜力替代众多商业应用(如包装、纺织品、建筑)中使用的不可持续材料。改变菌丝体材料机械性能的努力通常涉及改变生长培养基、加工方法或真菌种类。尽管这些努力取得了不同程度的成功,但所有方法都表明,表型(真菌菌丝体和菌丝体材料组装的表型)与所得机械性能之间存在很强的相关性。我们假设可以利用基因手段产生特定的真菌表型,从而得到具有特定机械性能的菌丝体材料。为了开始验证这一假设,我们使用了模式丝状真菌构巢曲霉的一个突变体,该突变体在编码细胞壁完整性(CWI)信号通路中最后一个激酶的基因mpkA中存在缺失。我们从ΔmpkA缺失突变体(A1404)中制备了一组菌丝体材料,另一组则从其同基因亲本(A1405;对照)中制备。在进行拉伸测试时,与对照产生的材料相比,ΔmpkA材料具有相似的弹性模量,但极限抗拉强度和断裂应变显著增加。在进行破碎试验(即抗剪切应力试验)时,ΔmpkA材料也具有更高的相对机械强度。为了确定这种行为的可能原因,我们进行了一系列全面的表型评估,重点关注:三维结构、菌丝形态、菌丝生长行为和分生孢子发育。我们发现,与对照相比,由ΔmpkA突变体产生的材料表现出明显较少的发育、改良的细胞壁组成、更大直径的菌丝、更多的总生物量、更高的持水能力和更致密堆积的材料,所有这些似乎都影响了机械性能的改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bdc/11658146/85d88dc70958/40694_2024_191_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验