Liao Linbu, Kim Junyoung, Cho Kanghee, Kim Junil, Lim Byung-Kwan, Won Kyoung Jae
Cancer Institution, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Bioinformatics, Soongsil University, Seoul, Korea.
Genomics Inform. 2024 Dec 18;22(1):30. doi: 10.1186/s44342-024-00031-2.
Cells interact with each other for proper function and homeostasis. Often, co-expression of ligand-receptor pairs from the single-cell RNAseq (scRNAseq) has been used to identify interacting cell types. Recently, RNA sequencing of physically interacting multi-cells has been used to identify interacting cell types without relying on co-expression of ligand-receptor pairs. This opens a new avenue to study the expression of interacting cell types. We present DeepDoublet, a deep-learning-based tool to decompose the transcriptome of physically interacting two cells (or doublet) into two sets of transcriptome. Applying DeepDoublet to the doublets of hepatocyte and liver endothelial cells (LECs), we successfully decomposed into the transcriptome of each cell type. Especially, DeepDoublet identified specific expression of hepatocytes when they are interacting with LECs. Among them was Angptl3 which has a role in blood vessel formation. DeepDoublet is a tool to identify neighboring cell-dependent gene expression.
细胞相互作用以实现正常功能和体内平衡。通常,来自单细胞RNA测序(scRNAseq)的配体-受体对的共表达已被用于识别相互作用的细胞类型。最近,对物理相互作用的多细胞进行RNA测序已被用于识别相互作用的细胞类型,而无需依赖配体-受体对的共表达。这为研究相互作用细胞类型的表达开辟了一条新途径。我们提出了DeepDoublet,一种基于深度学习的工具,用于将物理相互作用的两个细胞(或双细胞)的转录组分解为两组转录组。将DeepDoublet应用于肝细胞和肝内皮细胞(LECs)的双细胞,我们成功地将其分解为每种细胞类型的转录组。特别是,DeepDoublet确定了肝细胞在与LECs相互作用时的特异性表达。其中包括在血管形成中起作用的血管生成素样蛋白3(Angptl3)。DeepDoublet是一种识别邻近细胞依赖性基因表达的工具。