Suppr超能文献

MinLinMo:一种用于变量选择和线性模型预测的极简方法。

MinLinMo: a minimalist approach to variable selection and linear model prediction.

作者信息

Bohlin Jon, Håberg Siri E, Magnus Per, Gjessing Håkon K

机构信息

Department of Method Development and Analytics, Section for modeling and bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.

Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.

出版信息

BMC Bioinformatics. 2024 Dec 18;25(1):380. doi: 10.1186/s12859-024-06000-4.

Abstract

Generating prediction models from high dimensional data often result in large models with many predictors. Causal inference for such models can therefore be difficult or even impossible in practice. The stand-alone software package MinLinMo emphasizes small linear prediction models over highest possible predictability with a particular focus on including variables correlated with the outcome, minimal memory usage and speed. MinLinMo is demonstrated on large epigenetic datasets with prediction models for chronological age, gestational age, and birth weight comprising, respectively, 15, 14 and 10 predictors. The parsimonious MinLinMo models perform comparably to established prediction models requiring hundreds of predictors.

摘要

从高维数据生成预测模型通常会得到包含许多预测变量的大型模型。因此,对此类模型进行因果推断在实际中可能很困难甚至无法实现。独立软件包MinLinMo强调小型线性预测模型,而非追求尽可能高的可预测性,特别注重纳入与结果相关的变量、最小化内存使用和速度。在大型表观遗传数据集上展示了MinLinMo,其针对 chronological age(实足年龄)、gestational age(胎龄)和 birth weight(出生体重)的预测模型分别包含15、14和10个预测变量。简约的MinLinMo模型与需要数百个预测变量的既定预测模型表现相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9408/11654326/567e03d113fc/12859_2024_6000_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验