Oh Richul, Oh Joo Youn, Choi Hyuk Jin, Kim Mee Kum, Yoon Chang Ho
Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.
BMC Ophthalmol. 2024 Dec 19;24(1):531. doi: 10.1186/s12886-024-03801-2.
The purpose of the study was to evaluate the relationship between prediction errors (PEs) and ocular biometric variables in cataract surgery using nine intraocular lens (IOL) formulas with an explainable machine learning model.
We retrospectively analyzed the medical records of consecutive patients who underwent standard cataract surgery with a Tecnis 1-piece IOL (ZCB00) at a single center. We calculated predicted refraction using the following IOL formulas: Barrett Universal II (BUII), Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, Kane, SRK/T, and PEARL-DGS. We used a LightGBM-based machine learning model to evaluate the explanatory power of ocular biometric variables for PEs and assessed the relationship between PEs and ocular biometric variables using Shapley additive explanation (SHAP) values.
We included 1,430 eyes of 1,430 patients in the analysis. The SRK/T formula exhibited the highest R value (0.231) in the test set among the machine-learning models. In contrast, the Kane formula exhibited the lowest R value (0.021) in the test set, indicating that the model could explain only 2.1% of the PEs using ocular biometric variables. BUII, Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, PEARL-DGS formulas exhibited R values of 0.046, 0.025, 0.037, 0.194, 0.106, 0.191, and 0.058, respectively. Lower R values for the IOL formulas corresponded to smaller SHAP values.
The explanatory power of currently used ocular biometric variables for PEs in new-generation formulas such as BUII, Cooke K6, EVO V2.0 and Kane is low, implying that these formulas are already optimized. Therefore, the introduction of new ocular biometric variables into IOL calculation formulas could potentially reduce PEs, enhancing the accuracy of surgical outcomes.
本研究旨在使用可解释的机器学习模型评估白内障手术中预测误差(PEs)与眼部生物测量变量之间的关系。
我们回顾性分析了在单一中心接受Tecnis 1片式人工晶状体(ZCB00)标准白内障手术的连续患者的病历。我们使用以下人工晶状体公式计算预测屈光:巴雷特通用II(BUII)、库克K6、EVO V2.0、海吉斯、霍弗QST、霍拉迪1、凯恩、SRK/T和PEARL-DGS。我们使用基于LightGBM的机器学习模型评估眼部生物测量变量对PEs的解释力,并使用Shapley附加解释(SHAP)值评估PEs与眼部生物测量变量之间的关系。
我们纳入了1430例患者的1430只眼睛进行分析。在机器学习模型中,SRK/T公式在测试集中表现出最高的R值(0.231)。相比之下,凯恩公式在测试集中表现出最低的R值(0.021),这表明该模型仅能使用眼部生物测量变量解释2.1%的PEs。BUII、库克K6、EVO V2.0、海吉斯、霍弗QST、霍拉迪1、PEARL-DGS公式的R值分别为0.046、0.025、0.037、0.194、0.106、0.191和0.058。人工晶状体公式的R值越低,对应的SHAP值越小。
目前使用的眼部生物测量变量对新一代公式(如BUII、库克K6、EVO V2.0和凯恩)中的PEs的解释力较低,这意味着这些公式已经得到优化。因此,将新的眼部生物测量变量引入人工晶状体计算公式可能会降低PEs,提高手术结果的准确性。