Mayer Julius, Baum Daniel, Ambellan Felix, von Tycowicz Christoph
Visual and Data-centric Computing, Zuse Institute Berlin, Takustraße 7, Berlin, 14195, Berlin, Germany.
BMC Med Imaging. 2024 Dec 18;24(1):342. doi: 10.1186/s12880-024-01513-z.
Shape analysis provides methods for understanding anatomical structures extracted from medical images. However, the underlying notions of shape spaces that are frequently employed come with strict assumptions prohibiting the analysis of incomplete and/or topologically varying shapes. This work aims to alleviate these limitations by adapting the concept of functional maps. Further, we present a graph-based learning approach for morphometric classification of disease states that uses novel shape descriptors based on this concept. We demonstrate the performance of the derived classifier on the open-access ADNI database differentiating normal controls and subjects with Alzheimer's disease. Notably, the experiments show that our approach can improve over state-of-the-art from geometric deep learning.
形状分析提供了理解从医学图像中提取的解剖结构的方法。然而,常用的形状空间的基本概念带有严格的假设,禁止对不完整和/或拓扑变化的形状进行分析。这项工作旨在通过调整功能映射的概念来缓解这些限制。此外,我们提出了一种基于图的疾病状态形态计量分类学习方法,该方法使用基于这一概念的新型形状描述符。我们在开放获取的ADNI数据库上展示了所推导分类器区分正常对照和阿尔茨海默病患者的性能。值得注意的是,实验表明,我们的方法可以比几何深度学习的现有技术有所改进。