Suppr超能文献

一种基于微分坐标的高效黎曼统计形状模型:在 Osteoarthritis Initiative 数据分析分类中的应用。

An efficient Riemannian statistical shape model using differential coordinates: With application to the classification of data from the Osteoarthritis Initiative.

机构信息

Therapy Planning Group, Zuse Institute Berlin, Berlin, Germany.

Interactive Graphics Systems Group, Technische Universität Darmstadt, Darmstadt, Germany.

出版信息

Med Image Anal. 2018 Jan;43:1-9. doi: 10.1016/j.media.2017.09.004. Epub 2017 Sep 14.

Abstract

We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key advantage of our framework is that statistics in a manifold shape space becomes numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders.

摘要

我们提出了一种新的黎曼框架,用于统计分析形状,能够解释形状变化中的非线性。通过采用物理视角,我们引入了一种微分表示,将局部几何可变性作为焦点。我们将这些微分坐标建模为李群的元素,从而使我们的形状空间具有非欧几里得结构。我们框架的一个关键优势是,流形形状空间中的统计量在数值上是可行的,与最先进的方法相比,性能提高了几个数量级。我们表明,我们的黎曼模型非常适合识别群体内变异性以及群体间差异。特别是,我们在针对特定人群和泛化能力的实验中证明了所提出模型的优越性。我们进一步推导出一种统计形状描述符,在基于形状的形态障碍分类方面,它优于标准的欧几里得方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验