Suppr超能文献

利用机器学习模型检测接受产前检查的孕妇的贫血严重程度:埃塞俄比亚的情况。

Leveraging machine learning models for anemia severity detection among pregnant women following ANC: Ethiopian context.

作者信息

Kitaw Bekan, Asefa Chera, Legese Firew

机构信息

Faculty of Computing and Informatics, Jimma University, P.O. Box 378, Jimma, Ethiopia.

School of Electrical and Computer Engineering, Jimma University, P.O. Box 378, Jimma, Ethiopia.

出版信息

BMC Public Health. 2024 Dec 18;24(1):3500. doi: 10.1186/s12889-024-21039-x.

Abstract

BACKGROUND

Anemia during pregnancy is a significant public health concern, particularly in resource-limited settings. Machine learning (ML) offers promising avenues for improved anemia detection and management. This study investigates the potential of ML models in predicting anemia severity among pregnant women attending Antenatal Care (ANC) visits in Ethiopia.

METHODS

Data from the Ethiopian Demographic Health Survey, specialized hospitals, and public hospitals were utilized. The dataset included individuals diagnosed with severe (65.12%), moderate (15.63%), mild (16.65%) anemia, and non-anemic (2.61%) cases. Feature selection employed filter methods based on mutual information, and F-score was used to assess anemia severity prediction across four classes. Six ML models (MLP-NN, XGBoost, GNB, Decision Tree, Random Forest, and KNN) were evaluated using accuracy, precision, recall, and F1-score.

RESULTS

The Random Forest classifier achieved the best overall performance across all categories, with an accuracy of 97%, precision of 93%, recall of 93%, and F1-score of 93%. This indicates high true positive rates and low false positive rates. While other models like XGBoost, MLP-NN, and Decision Tree showed good performance, they weren't quite as strong as Random Forest. Classifiers like KNN and GNB had lower overall accuracy and a tendency to misclassify some cases.

CONCLUSIONS

This study demonstrates the promising potential of Random Forest in predicting anemia severity among pregnant women in Ethiopia. The findings contribute to a more holistic understanding of anemia risk factors and pave the way for improved early detection and targeted interventions.

摘要

背景

孕期贫血是一个重大的公共卫生问题,在资源有限的环境中尤为如此。机器学习为改善贫血的检测和管理提供了有前景的途径。本研究调查了机器学习模型在预测埃塞俄比亚接受产前检查(ANC)的孕妇贫血严重程度方面的潜力。

方法

使用了来自埃塞俄比亚人口与健康调查、专科医院和公立医院的数据。数据集包括被诊断为重度(65.12%)、中度(15.63%)、轻度(16.65%)贫血以及非贫血(2.61%)病例的个体。特征选择采用基于互信息的过滤方法,并使用F分数评估四个类别中的贫血严重程度预测。使用准确率、精确率、召回率和F1分数对六个机器学习模型(多层感知器神经网络、极端梯度提升、高斯朴素贝叶斯、决策树、随机森林和K近邻)进行了评估。

结果

随机森林分类器在所有类别中总体表现最佳,准确率为97%,精确率为93%,召回率为93%,F1分数为93%。这表明真阳性率高,假阳性率低。虽然极端梯度提升、多层感知器神经网络和决策树等其他模型表现良好,但不如随机森林强大。K近邻和高斯朴素贝叶斯等分类器总体准确率较低,且有将一些病例误分类的倾向。

结论

本研究证明了随机森林在预测埃塞俄比亚孕妇贫血严重程度方面具有广阔的潜力。这些发现有助于更全面地了解贫血风险因素,并为改进早期检测和有针对性的干预措施铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89cf/11657584/c37ef56dbf70/12889_2024_21039_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验