Suppr超能文献

孕期免疫变化:与妊娠20周时的既往疾病及产科并发症的关联——一项前瞻性队列研究

Immune changes in pregnancy: associations with pre-existing conditions and obstetrical complications at the 20th gestational week-a prospective cohort study.

作者信息

Westergaard David, Lundgaard Agnete Troen, Vomstein Kilian, Fich Line, Hviid Kathrine Vauvert Römmelmayer, Egerup Pia, Christiansen Ann-Marie Hellerung, Nielsen Josefine Reinhardt, Lindman Johanna, Holm Peter Christoffer, Hartwig Tanja Schlaikjær, Jørgensen Finn Stener, Zedeler Anne, Kolte Astrid Marie, Westh Henrik, Jørgensen Henrik Løvendahl, la Cour Freiesleben Nina, Banasik Karina, Brunak Søren, Nielsen Henriette Svarre

机构信息

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Methods and Analysis, Statistics Denmark, Copenhagen, Denmark.

出版信息

BMC Med. 2024 Dec 18;22(1):583. doi: 10.1186/s12916-024-03797-y.

Abstract

BACKGROUND

Pregnancy is a complex biological process and serious complications can arise when the delicate balance between the maternal and semi-allogeneic fetal immune systems is disrupted or challenged. Gestational diabetes mellitus (GDM), pre-eclampsia, preterm birth, and low birth weight pose serious threats to maternal and fetal health. Identification of early biomarkers through an in-depth understanding of molecular mechanisms is critical for early intervention.

METHODS

We analyzed the associations between 47 proteins involved in inflammation, chemotaxis, angiogenesis, and immune system regulation, maternal and neonatal health outcomes, and the baseline characteristics and pre-existing conditions of the mother in a prospective cohort of 1049 pregnant women around the 20th gestational week. We used Bayesian linear regression models to examine the impact of risk factors on biomarker levels and Bayesian cause-specific parametric proportional hazards models to analyze the effect of biomarkers on maternal and neonatal outcomes. We evaluated the predictive value of baseline characteristics and 47 proteins using machine-learning models and identified the most predictive biomarkers using Shapley additive explanation scores.

RESULTS

Associations were identified between specific inflammatory markers and several conditions, including maternal age and pre-pregnancy body mass index, chronic diseases, complications from prior pregnancies, and COVID-19 exposure. Smoking during pregnancy affected GM-CSF and 9 other biomarkers. Distinct biomarker patterns were observed for different ethnicities. Within obstetric complications, IL-6 inversely correlated with pre-eclampsia risk, while birth weight to gestational age ratio was linked to markers including VEGF and PlGF. GDM was associated with IL-1RA, IL-17D, and eotaxin-3. Severe postpartum hemorrhage correlated with CRP, IL-13, and proteins of the IL-17 family. Predictive modeling yielded area under the receiver operating characteristic curve values of 0.708 and 0.672 for GDM and pre-eclampsia, respectively. Significant predictive biomarkers for GDM included IL-1RA and eotaxin-3, while pre-eclampsia prediction yielded the highest predictions when including MIP-1β, IL-1RA, and IL-12p70.

CONCLUSIONS

Our study provides novel insights into the interplay between preexisting conditions and immune dysregulation in pregnancy. These findings contribute to our understanding of the pathophysiology of obstetric complications and the identification of novel biomarkers for early intervention(s) to improve maternal and fetal health.

摘要

背景

怀孕是一个复杂的生物学过程,当母体与半同种异体胎儿免疫系统之间的微妙平衡被打破或受到挑战时,可能会出现严重并发症。妊娠期糖尿病(GDM)、子痫前期、早产和低出生体重对母婴健康构成严重威胁。通过深入了解分子机制来识别早期生物标志物对于早期干预至关重要。

方法

我们在一个包含1049名妊娠约20周孕妇的前瞻性队列中,分析了47种参与炎症、趋化作用、血管生成和免疫系统调节的蛋白质与母婴健康结局以及母亲的基线特征和既往疾病之间的关联。我们使用贝叶斯线性回归模型来检验风险因素对生物标志物水平的影响,并使用贝叶斯特定病因参数比例风险模型来分析生物标志物对母婴结局的影响。我们使用机器学习模型评估基线特征和47种蛋白质的预测价值,并使用夏普里加法解释分数识别最具预测性的生物标志物。

结果

确定了特定炎症标志物与多种情况之间的关联,包括母亲年龄、孕前体重指数、慢性疾病、既往妊娠并发症以及新冠病毒暴露情况。孕期吸烟会影响粒细胞-巨噬细胞集落刺激因子(GM-CSF)和其他9种生物标志物。不同种族观察到不同的生物标志物模式。在产科并发症中,白细胞介素-6(IL-6)与子痫前期风险呈负相关,而出生体重与孕周比与包括血管内皮生长因子(VEGF)和胎盘生长因子(PlGF)在内的标志物有关。妊娠期糖尿病与白细胞介素-1受体拮抗剂(IL-1RA)、白细胞介素-17D和嗜酸性粒细胞趋化蛋白-3有关。严重产后出血与C反应蛋白(CRP)、白细胞介素-13和白细胞介素-17家族的蛋白质有关。预测模型得出妊娠期糖尿病和子痫前期的受试者操作特征曲线下面积值分别为0.708和0.672。妊娠期糖尿病的重要预测生物标志物包括白细胞介素-1受体拮抗剂和嗜酸性粒细胞趋化蛋白-3,而子痫前期预测在纳入巨噬细胞炎性蛋白-1β(MIP-1β)、白细胞介素-1受体拮抗剂和白细胞介素-12p70时预测效果最佳。

结论

我们的研究为孕期既往疾病与免疫失调之间的相互作用提供了新的见解。这些发现有助于我们理解产科并发症的病理生理学,并有助于识别用于早期干预以改善母婴健康的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1801/11657209/8459d14f0627/12916_2024_3797_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验